Glucocorticoid excess predisposes to the development of diabetes, at least in part through impairment of insulin secretion. The underlying mechanism has remained elusive. We show here that dexamethasone upregulates transcription and expression of the serumand glucocorticoid-inducible kinase 1 (SGK1) in insulinsecreting cells, an effect reversed by mifepristone (RU486), an antagonist of the nuclear glucocorticoid receptor. G lucocorticoids are known to induce diabetes (1-3). In addition to peripheral insulin resistance and increased hepatic glucose production by stimulating gluconeogenesis (4), glucocorticoids interfere with insulin secretion of pancreatic -cells (5-7). Despite extensive (8 -12) studies, the molecular mechanism is still a matter of debate. Increased expression of ␣ 2 -adrenoceptors has been proposed to account for dexamethasone-induced inhibition of insulin secretion (9). Thus, transgenic mice overexpressing glucocorticoid receptors in -cells show 30% more UK14304 binding, a selective adrenoceptor agonist, than wild-type islets (2). These mice are glucose intolerant and have reduced plasma insulin levels. Since pertussis toxin and cAMP overcome dexamethasone inhibition of glucose-induced insulin release, decreased cAMP levels during dexamethasone treatment may be responsible for inhibition of secretion (6,13). Furthermore, dexamethasone was reported to decrease Glut2 protein abundance at the plasma membrane, a change that may contribute to impaired glucose-induced insulin secretion (8). Dexamethasone also downregulates glucokinase mRNA in an insulin-secreting cell line (14). Mifepristone (RU486), a nuclear glucocorticoid receptor antagonist, completely abolished dexamethasone-induced inhibition of insulin secretion (5,6), pointing to the involvement of glucocorticoid-dependent gene expression. Glucocorticoid-sensitive genes include the serum-and glucocorticoid-inducible kinase 1 (SGK1) (rev. in 15). The kinase is expressed in virtually all human tissues tested. Unlike its isoforms SGK2 and SGK3 and the related kinase protein kinase B, SGK1 is under strong transcriptional control of glucocorticoids (15) and mineralocorticoids (16). SGK1 has been shown to regulate a variety of ion channels including K ϩ channels such as voltage-gated K v channels (17).Ion channel activity is in turn decisive for insulin secretion from pancreatic -cells. 4-AP, 4-aminopyridine; GAPDH, glyceraldehyde-3-phsophate dehydrogenase; SGK1, serum-and glucocorticoid-inducible kinase 1; TEA, tetraethylammonium.
Potassium channels regulate insulin secretion. The closure of K(ATP) channels leads to membrane depolarisation, which triggers Ca(2+) influx and stimulates insulin secretion. The subsequent activation of K(+) channels terminates secretion. We examined whether KCNQ1 channels are expressed in pancreatic beta-cells and analysed their functional role. Using RT/PCR cellular mRNA of KCNQ1 but not of KCNE1 channels was detected in INS-1 cells. Effects of two sulfonamide analogues, 293B and HMR1556, inhibitors of KCNQ1 channels, were examined on voltage-activated outwardly rectifying K(+) currents using the patch-clamp method. It was found that 293B inhibited 60% of whole-cell outward currents induced by voltage pulses from -70 to +50 mV with a concentration for half-maximal inhibition (IC(50)) of 37 microM. The other sulfonamide analogue HMR1556 inhibited 48% of the outward current with an IC(50) of 7 microM. The chromanol 293B had no effect on tolbutamide-sensitive K(ATP) channels. Action potentials induced by current injections were broadened and after-repolarisation was attenuated by 293B. Insulin secretion in the presence but not in the absence of tolbutamide was significantly increased by 293B. These results suggest that 293B- and HMR1556-sensitive channels, probably in concert with other voltage-activated K(+) channels, influence action potential duration and frequency and thus insulin secretion.
The aim of the present study was to characterize depolarization-activated outward currents in insulin-secreting INS-1 cells and to investigate the role of K+ channels other than the KATP channels in the regulation of insulin release. Outward currents were inhibited by 4-aminopyridine (4-AP, 10 mmol/l), tetraethylammonium (TEA, 10 mmol/l) and tetrapentylammonium (TPeA, 100 mumol/l) by 55.1 +/- 3.8% (n = 3), 78.1 +/- 3.2% (n = 6) and 98.7 +/- 0.8% (n = 5), respectively. Margatoxin (5 nmol/l) and charybdotoxin (3 mumol/l) had no effect. 4-AP inhibited mainly a fast-activating, slowly inactivating current, whereas the TEA- and TPeA-sensitive current components were slowly activating and non-inactivating. Forskolin and the forskolin analogue 1,9-dideoxyforskolin, which does not stimulate adenylyl cyclase, also inhibited the outward current, suggesting a direct effect on the channels. Using reverse transcriptase polymerase chain reaction (RT/PCR). Kv channel mRNAs of Kv1.4, Kv1.5, Kv2.1, Kv2.2, Kv3.1 and Kv3.2 were detected whereas other Kv channels, Kv1.1, Kv1.2, Kv1.3, Kv1.6 and Kv3.4 were not detected. Insulin secretion in the presence of tolbutamide (100 mumol/l) was increased by 4-AP, TEA and TPeA by 65%, 41% and 150%, respectively. Basal secretion was not affected by these blockers. Our study reveals that the opening of voltage-dependent K+ channels negatively controls insulin secretion in depolarized cells, probably by shortening the action potential thus reducing Ca2+ influx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.