Modeling phonological units of speech is a critical issue in speech recognition. In this paper, our recent development of an overlapping-feature-based phonological model that represents long-span contextual dependency in speech acoustics is reported. In this model, high-level linguistic constraints are incorporated in automatic construction of the patterns of feature-overlapping and of the hidden Markov model (HMM) states induced by such patterns. The main linguistic information explored includes word and phrase boundaries, morpheme, syllable, syllable constituent categories, and word stress. A consistent computational framework developed for the construction of the feature-based model and the major components of the model are described. Experimental results on the use of the overlapping-feature model in an HMM-based system for speech recognition show improvements over the conventional triphone-based phonological model.
Considering personal privacy and difficulty of obtaining training material for many seldom used English words and (often non-English) names, language-independent (LI) with lightweight speaker-dependent (SD) automatic speech recognition (ASR) is a promising option to solve the problem. The dynamic time warping (DTW) algorithm is the state-of-the-art algorithm for small foot-print SD ASR applications with limited storage space and small vocabulary, such as voice dialing on mobile devices, menu-driven recognition, and voice control on vehicles and robotics. Even though we have successfully developed two fast and accurate DTW variations for clean speech data, speech recognition for adverse conditions is still a big challenge. In order to improve recognition accuracy in noisy environment and bad recording conditions such as too high or low volume, we introduce a novel one-against-all weighted DTW (OAWDTW). This method defines a one-against-all index (OAI) for each time frame of training data and applies the OAIs to the core DTW process. Given two speech signals, OAWDTW tunes their final alignment score by using OAI in the DTW process. Our method achieves better accuracies than DTW and merge-weighted DTW (MWDTW), as 6.97% relative reduction of error rate (RRER) compared with DTW and 15.91% RRER compared with MWDTW are observed in our extensive experiments on one representative SD dataset of four speakers' recordings. To the best of our knowledge, OAWDTW approach is the first weighted DTW specially designed for speech data in adverse conditions.
In this paper we report on a fuzzy logic-based language understanding system applied to speech recognition. This system acquires conceptual knowledge from corpus data and organizes such knowledge into fuzzy logic inference rules. The system parses speech recognition results into conceptual structures in a robust manner, and thus is able to tolerate noise caused by speech recognition errors. We will discuss the fuzzy inference rule learning method and explain its organization. Experimental results that demonstrate the ability of the system to deal with complex speech input instances are reported.0-7803-7280-8/02/$10.00 02002 IEEE
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.