Starting from an electron-phonon interacting model, by means of the third formalism of quantum statistics, and with the aid of a diagonalization theorem, the Tc of superconductors from weak coupling to strong coupling cases are studied in a unified way. Our results are comparable with those of McMillan's theory, (which is valid up to the electron-phonon (e-ph) coupling parameter λ~1, a good agreement is shown for λ<1.3) and the Allen and Dynes's theory. Especially our results are very close to those of Hg spectrum with λ~2.0 and some strong coupling compounds. The theory is exact in the thermodynamic limit, without introducing variation method, the compensation of the dangerous diagrams in finite order in perturbation theory, abnormal green's function etc.
The flux relaxation is one of important topics in the studies of high Tc superconductivity, because it is related to the energy loss in practical applications. There are many mechanisms, theories and relaxation laws suggested in the literatures. It is very interesting to test them according to the characters and compare them with the experiments. Some people think that the characters of the famous theories are their negative curvature. According our inversion solution, the relaxation ArcG law and experimental data analysis, the relaxation law has both positive and negative signs. This prediction is hopeful to be checked by experiments in future. The current densities of many high Tc superconductors decrease very rapidly in the early time in the relaxation. People do not know what their maximums are. In this work, a theory to determine these maximums of the current densities is presented. The theory is concretely realized by inversion for some real data of the YBCO and their maximum current densities are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.