The current data-driven underwater object detection methods have significantly progressed. However, there are millions of marine creatures in the oceans, and collecting a corresponding database for each species for similar tasks (such as object detection)is expensive. Besides, marine environments are more complex than in-air cases. Water quality, illuminations, and seafloor topography may lead to domain shifting with visual instability features of underwater objects. To tackle these problems, we propose a few-shot adaptive object detection framework with a novel two-stage training approach and a lightweight feature correction module to accommodate both image-level and instance-level domain shifting on multiple datasets. Our method can be trained in a source domain and quickly adapt to an unfamiliar target domain with only a few labeled samples. Extensive experimental results have demonstrated the knowledge transfer capability of the proposed method in detecting two similar marine species. The code will be available at: https://github.com/roadhan/FSCW
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.