Highlights
We investigate the predictive power of the IDEMV and VIX for the European stock indices volatilities during the COVID-19 pandemic.
The IDEMV has stronger predictive power for the France and UK stock markets volatilities during the COVID-19 pandemic.
The VIX has superior predictive ability for the three European stock markets during the COVID-19 pandemic.
This study evaluates whether CBOE crude oil volatility index (OVX) owns forecasting ability for China’s oil futures volatility using Markov-regime mixed data sampling (MS-MIDAS) models. In-sample empirical result shows that, OVX can significantly lead to high future short-term, middle-term and long-term volatilities with regard to Chinese oil futures market. Moreover, our proposed model, the Markov-regime MIDAS with including the OVX (MS-MIDAS-RV-OVX), significantly outperforms the MIDAS and other competing models. Unsurprising results further confirm that OVX indeed contain predictive information for oil realized volatility (especially significant and robust in middle-term and long-term horizons) and regime switching is useful to deal with the structural break within the energy market. We carry out economic value analysis and discuss OVX’s asymmetric effects concerning different trading hours and good (bad) OVX, and find OVX performs better in day-time trading hours and the good OVX is more predictive for the oil futures RV than the bad OVX. The further discussion also confirms our previous conclusions are robust during the highly volatile period of the COVID-19 pandemic.
PurposeThis paper verifies whether popular Internet information from Internet forum and search engine exhibit useful content for forecasting the volatility in Chinese stock market.Design/methodology/approachFirst, the authors’ study commences with several HAR-RV-type models, then the study amplifies them respectively with the posting volume and search frequency to construct HAR-IF-type and HAR-BD-type models. Second, from in-sample and out-of-sample analysis, the authors empirically investigate the interpretive ability, forecasting performance (statistic and economic). Third, various robustness checks are utilized to reconfirm the authors’ findings, including alternative forecast window, alternative evaluation method and alternative stock market. Finally, the authors further discuss the forecasting performance in different forecast horizons (h = 5, 10 and 20) and asymmetric effect of information from Internet forum.FindingsFrom in-sample perspective, the authors discover that posting volume exhibits better analytical ability for Chinese stock volatility than search frequency. Out-of-sample results indicate that forecasting models with posting volume could achieve a superior forecasting performance and increased economic value than competing models.Practical implicationsThese findings can help investors and decision-makers obtain higher forecasting accuracy and economic gains.Originality/valueThis study enriches the existing research findings about the volatility forecasting of stock market from two dimensions. First, the authors thoroughly investigate whether the Internet information could enhance the efficiency and accuracy of the volatility forecasting concerning with the Chinese stock market. Second, the authors find a novel evidence that the information from Internet forum is more superior to search frequency in volatility forecasting of stock market. Third, they find that this study not only compares the predictability of the posting volume and search frequency simply, but it also divides the posting volume into “good” and “bad” segments to clarify its asymmetric effect respectively.HighlightsThis study aims to verify whether posting volume and search frequency contain predictive content for estimating the volatility in Chinese stock market.The forecasting model with posting volume can achieve a superior forecasting performance and increases economic value than competing models.The results are robust in alternative forecast window, alternative evaluation method and alternative market index.The posting volume still can help to forecast future volatility for mid- and long-term forecast horizons. Additionally, the role of posting volume in forecasting Chinese stock volatility is asymmetric.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.