In this article, we study a class of fractional coupled systems with Riemann-Stieltjes integral boundary conditions and generalized p-Laplacian which involves two different parameters. Based on the Guo-Krasnosel'skii fixed point theorem, some new results on the existence and nonexistence of positive solutions for the fractional system are received, the impact of the two different parameters on the existence and nonexistence of positive solutions is also investigated. An example is then given to illuminate the application of the main results.
MSC: 26A33; 34B18
In this paper we use the fixed point index to study the existence of positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions. Here we use appropriate nonnegative matrices to depict the coupling behavior for our nonlinearities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.