Diazo compounds as coupling partners are efficiently applied to Ir(III)-catalyzed direct C-H functionalization of arylphosphine oxides. Involving C-H activation, carbene insertion, and tautomerism, this reaction proceeds under mild conditions, thus proving an approach to the synthesis of MOP-type ligand precursor in a single step. The utility of this transformation has been further demonstrated in ligand synthesis as well as in the construction of phosphole framework.
Obstructive sleep apnea is characterized by chronic intermittent hypoxia (CIH), which is a risk factor for renal peritubular capillary (PTC) loss, and angiotensin II receptor blockers can alleviate PTC loss. However, the mechanism by which losartan (an angiotensin II receptor blocker) reduces CIH-induced PTC loss and attenuates kidney damage is still unknown. Thus, in this study, we examined the protective effects of losartan against CIH-induced PTC loss and explored the underlying mechanisms in rat CIH model. The immunohistochemical staining of CD34 and morphological examination showed that CIH reduced PTC density and damaged tubular epithelial cells. Immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), real-time quantitative PCR, and western blot analysis results revealed that CIH increased the expression of hypoxia inducible factor-1α (HIF-1α), angiotensin II (Ang II), angiotensin II type 1 receptor (AT1R), pro-angiogenesis factor vascular endothelial growth factor (VEGF), and anti-angiogenesis factor thrombospondin-1 (TSP-1) in the renal cortex of rats. CIH may up-regulate VEGF expression and simultaneously increase TSP-1 production. By histopathological, immunohistochemistry, ELISA, RT-qPCR, and western blot analysis, we found that the expressions of renal renin–angiotensin system (RAS), HIF-1α, VEGF, and TSP-1 were decreased, and PTC loss and tubular epithelial cell injury were attenuated with losartan treatment. Losartan ameliorated CIH-induced PTC loss by modulating renal RAS to improve the crosstalk between endothelial cells and tubular epithelial cells and subsequently regulate the balance of angiogenesis factors. Our study provided novel insights into the mechanisms of CIH-induced kidney damage and indicated that losartan could be a potential therapeutic agent for renal protection by alleviating CIH-induced PTC loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.