Alzheimer's disease (AD), which most commonly occurs in the elder, is a chronic neurodegenerative disease with no agreed drugs or treatment protocols at present. Amnestic mild cognitive impairment (aMCI), earlier than AD onset and later than subjective cognitive decline (SCD) onset, has a serious probability of converting into AD. The SCD, which can last for decades, subjectively complains of decline impairment in memory. Distinct altered patterns of default mode network (DMN) subnetworks connected to the whole brain are perceived as prominent hallmarks of the early stages of AD. Nevertheless, the aberrant phase position connectivity (PPC) connected to the whole brain in DMN subnetworks remains unknown. Here, we hypothesized that there exist distinct variations of PPC in DMN subnetworks connected to the whole brain for patients with SCD and aMCI, which might be acted as discriminatory neuroimaging biomarkers. We recruited 27 healthy controls (HC), 20 SCD and 28 aMCI subjects, respectively, to explore aberrant patterns of PPC in DMN subnetworks connected to the whole brain. In anterior DMN (aDMN), SCD group exhibited aberrant PPC in the regions of right superior cerebellum lobule (SCL), right superior frontal gyrus of medial part (SFGMP), and left fusiform gyrus (FG) in comparison of HC group, by contrast, no prominent difference was found in aMCI group. It is important to note that aMCI group showed increased PPC in the right SFGMP in comparison with SCD group. For posterior DMN (pDMN), SCD group showed decreased PPC in the left superior parietal lobule (SPL) and right superior frontal gyrus (SFG) compared to HC group. It is noteworthy that aMCI group showed decreased PPC in the left middle frontal gyrus of orbital part (MFGOP) and right SFG compared to HC group, yet increased PPC was found in the left superior temporal gyrus of temporal pole (STGTP). Additionally, aMCI group exhibited
Smart healthcare has undergone new opportunities and challenges with the arrival of the Industry 4.0 era. The intelligent imaging diagnosis system is a staple part of smart healthcare, helping doctors make clinical decisions. Nevertheless, intelligent diagnosis analysis is still confronted with the issue that it is challenging to extract effective features from the limited and high-dimensional data, particularly in resting-state data of amnesic mild cognitive impairment (aMCI). Furthermore, the intelligent imaging diagnosis system for aMCI is conductive to make timely predicting groups that may convert to Alzheimer’s disease (AD). To improve the system’s detection performance and reduce its data redundancy, we first develop an adaptive structure feature generation strategy (ASFGS) based on the Laplacian matrix and sparse autoencoder to obtain the structural features of brain functional network (BFN). Concurrently, we present a multiscale local feature detection strategy (MLFDS) to overcome the low utilization of local features of BFN. And finally, multiscale features, including structural features and multiscale local features, are fused by concatenation method to further improve the detection performance of aMCI system. Support vector machine based on radial basis function (RBF-SVM) for small data learning is adopted to evaluate the effectiveness of the proposed features. Besides, we employ leave-one-out cross-validation strategy to avoid the overfitting problem of classifier training process. The experiment results elucidate that the accuracy (ACC) and the area under the curve (AUC) in this work provide 86.57% and 86.36%, respectively, which outperforms the traditional methods and offers new insights for accuracy requirements of the aMCI system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.