In this paper, we investigate the Hölder regularity of solutions to the time fractional Schrödinger equation of order 1<α<2, which interpolates between the Schrödinger and wave equations. This is inspired by Hirata and Miao's work which studied the fractional diffusion‐wave equation. First, we give the asymptotic behavior for the oscillatory distributional kernels and their Bessel potentials by using Fourier analytic techniques. Then, the space regularity is derived by employing some results on singular Fourier multipliers. Using the asymptotic behavior for the above kernels, we prove the time regularity. Finally, we use mismatch estimates to prove the pointwise convergence to the initial data in Hölder spaces. In addition, we also prove Hölder regularity result for the Schrödinger equation.
This paper is concerned with one-dimensional quadratic semilinear fourth-order Schrödinger equations. Motivated by the quadratic Schrödinger equations in the pioneering work of Kenig-Ponce-Vega [12], three bilinearities uv, uv, and uv for functions u, v : R × [0, T ] → C are sharply estimated in function spaces X s,b associated to the fourth-order Schrödinger operator i∂t + ∆ 2 − ε∆. These bilinear estimates imply local wellposedness results for fourth-order Schrödinger equations with quadratic nonlinearity. To establish these bilinear estimates, we derive a fundamental estimate on dyadic blocks for the fourth-order Schrödinger from the [k, Z]-multiplier norm argument of Tao [20].
We study the blow-up of solutions to the focusing Hartree equation iut + ∆u + (|x| −γ * |u| 2 )u = 0. We use the strategy derived from the almost finite speed of propagation ideas devised by Bourgain (1999) and virial analysis to deduce that the solution with negative energy (E(u0) < 0) blows up in either finite or infinite time. We also show a result similar to one of Holmer and Roudenko (2010) for the Schrödinger equations using techniques from scattering theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.