Transfer learning is a widely used method to build high performing computer vision models. In this paper, we study the efficacy of transfer learning by examining how the choice of data impacts performance. We find that more pre-training data does not always help, and transfer performance depends on a judicious choice of pre-training data. These findings are important given the continued increase in dataset sizes. We further propose domain adaptive transfer learning, a simple and effective pre-training method using importance weights computed based on the target dataset. Our method to compute importance weights follow from ideas in domain adaptation, and we show a novel application to transfer learning. Our methods achieve state-of-the-art results on multiple fine-grained classification datasets and are well-suited for use in practice.
The research community has increasing interest in autonomous driving research, despite the resource intensity of obtaining representative real world data. Existing selfdriving datasets are limited in the scale and variation of the environments they capture, even though generalization within and between operating regions is crucial to the overall viability of the technology. In an effort to help align the research community's contributions with real-world selfdriving problems, we introduce a new large scale, high quality, diverse dataset. Our new dataset consists of 1150 scenes that each span 20 seconds, consisting of well synchronized and calibrated high quality LiDAR and camera data captured across a range of urban and suburban geographies. It is 15x more diverse than the largest camera+LiDAR dataset available based on our proposed diversity metric. We exhaustively annotated this data with 2D (camera image) and 3D (LiDAR) bounding boxes, with consistent identifiers across frames. Finally, we provide strong baselines for 2D as well as 3D detection and tracking tasks. We further study the effects of dataset size and generalization across geographies on 3D detection methods. Find data, code and more up-todate information at http://www.waymo.com/open.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.