An investigation of the structure and drug release mechanism of a drug delivery system is proposed on the basis of semi-empirical and ab initio computations in vacuum stage. Cis-aconityl linkage is used to improve the interaction between an anti-cancer agent, doxorubicin, and a glycol chitosan biopolymer. It has been found that the doxorubicin-conjugated glycol chitosan carrier has more stability. The stability is increased when the lengths of the polyethylene glycol (PEG) chains in the glycol chitosan biopolymer are increased. Cis-aconityl can release doxorubicin under appropriate environmental conditions. Relative energies of this mechanism in an acid condition, as determined by B3LYP/6-31G//PM3, are 122.41, 119.27, 160.18 and 222.22 kcal/mol, and by the B3LYP/6-31G//HF/6-31G method are 54.23, 109.28, 219.98 and 980.49 kcal/mol, with mono-, di-, tri-, and quanta-ethylene glycol, respectively. In a normal condition, the relative energies are above 300 kcal/mol for all reactions. Therefore, cis-aconityl will release doxorubicin in an acid solution but not in a normal condition. The glycol chitosan polymer can be degraded in an acid solution as well. Long PEG chains influence the release mechanism of doxorubicin. The proposed length of the PEG chain is di-ethylene glycol. These simulation results agree well with various reported experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.