Human movement tracking is useful in a variety of areas, such as search-and-rescue activities. CCTV and IP cameras are popular as front-end sensors for tracking human motion; however, they are stationary and have limited applicability in hard-to-reach places, such as those where disasters have occurred. Using a drone to discover a person is challenging and requires an innovative approach. In this paper, we aim to present the design and implementation of a human motion tracking method using a Tello EDU drone. The design methodology is carried out in four steps: (1) control panel design; (2) human motion tracking algorithm; (3) notification systems; and (4) communication and distance extension. Intensive experimental results show that the drone implemented by the proposed algorithm performs well in tracking a human at a distance of 2–10 m moving at a speed of 2 m/s. In an experimental field of the size 95×35m2, the drone tracked human motion throughout a whole day, with the best tracking results observed in the morning. The drone was controlled from a laptop using a Wi-Fi router with a maximum horizontal tracking distance of 84.30 m and maximum vertical distance of 13.40 m. The experiment showed an accuracy rate for human movement detection between 96.67 and 100%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.