In this study, a novel fast terminal sliding mode control technique based on the disturbance observer is recommended for the stabilization of underactuated robotic systems. The finite time disturbance observer is employed to estimate the exterior disturbances of the system and develop the finite time control law. The proposed controller can regulate the state trajectories of the underactuated systems to the origin within a finite time in the existence of external disturbances. The stability analysis of the proposed control scheme is verified via the Lyapunov stabilization theory. The designed control law is enough to drive a switching surface achieving the fast terminal sliding mode against severe model nonlinearities with large parametric uncertainties and external disturbances. Illustrative simulation results and experimental validations on a cart-inverted pendulum system are provided to display the success and efficacy of the offered method.
Practical systems in engineering fields often require that values of state variables, during the finite-time interval, must not exceed a certain value when the initial values of state are given. This leads us to investigate the finite-time stability and stabilization of a linear system with a constant time-delay. Sufficient conditions to guarantee the finite-time stability and stabilization are derived by using a new form of Lyapunov-Krasovskii functional and a desired state-feedback controller. These conditions are in the form of LMIs and inequalities. Two numerical examples are given to show the effectiveness of the proposed criteria. Results show that our proposed criteria are less conservative than previous works in terms of versatility of minimum bounds and larger bounds of time-delay.
Practical systems such as hybrid power systems are currently implemented around the world. In order to get the system to work properly, the systems usually require their behavior to be maintained or state values to stay within a certain threshold. However, it is difficult to form a perfect mathematical model for describing behavior of the practical systems since there may be some information (uncertainties) that is not observed. Thus, in this article, we studied the stability of an uncertain linear system with a non-differentiable time-varying delay. We constructed Lyapunov-Krasovskii functionals (LKFs) containing several symmetric positive definite matrices to obtain robust finite-time stability (RFTS) and stabilization (RFTU) of the uncertain linear system. With the controller and uncertainties in the considered system, there exist nonlinear terms occurring in the formulation process. Past research handled these nonlinear terms as new variables but this led to some difficulty from a computation point of view. Instead, we applied a novel approach via Cauchy-like matrix inequalities to handle these difficulties. In the end, we present three numerical simulations to show the effectiveness of our proposed theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.