IMPF: 00.66A synthesis of the upper Moscovian sedimentotogical and palaeontological record of terrestrial habitats across the Variscan foreland and adjacent intramontane basins (an area which is referred to here as Variscan Euramerica) suggests a contraction and progressive westward shift of the coal swamps. These changes can be correlated with pulses of tectonic activity (tectonic phases) resulting from the northwards migration of the Variscan Front. This tectonic activity caused disruption to the landscapes and drainage patterns where the coat swamps were growing, which became less suitable to growth of the dominant plants of the swamps, the arborescent lycopsids. They were progressively replaced by vegetation dominated by marattialean ferns, which through a combination of slower growth and larger canopies resulted in less evapo-transpiration. This in turn caused localised reductions in rainfall, which further affected the ability of the lycopsids to dominate the swamp vegetation. These changes were initially localised and where the coat swamps were able to survive the lycopsids and pteridosperms show little change in either species diversity or biogeography, indicating that at this time there was minimal regional-scale climate change taking place. By Asturian times, however, the process had accelerated and the swamps in Variscan Euramerica became progressively replaced by predominantly conifer and cordaite vegetation that favoured much drier substrates. Except in localised pockets in intramontane basins of the Variscan Mountains, the last development of coat swamps in Variscan Euramerica was of early Cantabrian age. Further west, lycopsid-dominated coal swamps persisted for a little longer. The last remnants of the lycopsid-dominated coal swamps in the Illinois Basin disappeared probably by middle-late Cantabrian times, as the cycle of contracting wetlands and regional reductions in rainfall generated its own momentum, and no longer needed the impetus of tectonic instability. This tectonically-driven decline in the Euramerican coal swamps was probably responsible for an annual increase in atmospheric CO2 of c. 0.37 ppm, and may have been implicated in the marked increase in global temperatures near the Moscovian - Kasimovian boundary, and the onset of the Late Pennsylvanian interglacial.Peer reviewe
The colonization of land by vascular plants is an extremely important phase in Earth's life history. This key evolutionary process is thought to have begun during the Middle Cambrian period and culminated in the Silurian/Early Devonian period (interval about 509-393 million years ago (Ma)), and is documented primarily by microfossils (that is, by dispersed spores, phytodebris including fragments of algae, tissues, sporangia and cuticles), tubes and rare megafossils . A newly recognized fossil cooksonioid plant with in situ spores from the Barrandian area, Czech Republic, is of the highest importance because it represents extremely ancient megafossil evidence of land plant diploid generation: sporophytes (~432 Ma). The robust size of this plant places it among the largest known early polysporangiate land plants and it is probable that it attained adequate size for both aeration and effective photosynthetic competence. This would mean not only that sporophytes were photosynthetically autonomous but also that the they might have been able to sustain a relatively gametophyte-independent existence.
The most ancient macroscopic plants fossils are Early Silurian cooksonioid sporophytes from the volcanic islands of the peri-Gondwanan palaeoregion (the Barrandian area, Prague Basin, Czech Republic). However, available palynological, phylogenetic and geological evidence indicates that the history of plant terrestrialization is much longer and it is recently accepted that land floras, producing different types of spores, already were established in the Ordovician Period. Here we attempt to correlate Silurian floral development with environmental dynamics based on our data from the Prague Basin, but also to compile known data on a global scale. Spore-assemblage analysis clearly indicates a significant and almost exponential expansion of trilete-spore producing plants starting during the Wenlock Epoch, while cryptospore-producers, which dominated until the Telychian Age, were evolutionarily stagnate. Interestingly cryptospore vs. trilete-spore producers seem to react differentially to Silurian glaciations—trilete-spore producing plants react more sensitively to glacial cooling, showing a reduction in species numbers. Both our own and compiled data indicate highly terrestrialized, advanced Silurian land-plant assemblage/flora types with obviously great ability to resist different dry-land stress conditions. As previously suggested some authors, they seem to evolve on different palaeo continents into quite disjunct specific plant assemblages, certainly reflecting the different geological, geographical and climatic conditions to which they were subject.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.