Ionospheric signatures possibly induced by the Nepal earthquake are investigated far outside the epicentral region in Taiwan (~3700 km distance from the epicenter) and in the Czech Republic (~6300 km distance from the epicenter). It is shown that the ionospheric disturbances were caused by long period,~20 s, infrasound waves that were excited locally by vertical component of the ground surface motion and propagated nearly vertically to the ionosphere. The infrasound waves are heavily damped at the heights of F layer at around 200 km, so their amplitude strongly depends on the altitude of observation. In addition, in the case of continuous Doppler sounding, the value of the Doppler shift depends not only on the advection (up and down motion) of the reflecting layer but also on the compression/ rarefaction of the electron gas and hence on the electron density gradient. Consequently, under significant differences of reflection height of sounding radio waves and partly also under large differences in plasma density gradients, the observed ionospheric response at larger distances from the epicenter can be comparable with the ionospheric response observed at shorter distances, although the amplitudes of causative seismic motions differ by more than one order of magnitude.
Abstract. We report a study of penetration of the VLF electromagnetic waves induced by lightning to the ionosphere. We compare the fractional hop whistlers recorded by the ICE experiment onboard the DEMETER satellite with lightning detected by the EUCLID detection network. To identify the fractional hop whistlers, we have developed software for automatic detection of the fractional-hop whistlers in the VLF spectrograms. This software provides the detection times of the fractional hop whistlers and the average amplitudes of these whistlers. Matching the lightning and whistler data, we find the pairs of causative lightning and corresponding whistler. Processing data from ∼200 DEMETER passes over the European region we obtain a map of mean amplitudes of whistler electric field as a function of latitudinal and longitudinal difference between the location of the causative lightning and satellite magnetic footprint. We find that mean whistler amplitude monotonically decreases with horizontal distance up to ∼1000 km from the lightning source. At larger distances, the mean whistler amplitude usually merges into the background noise and the whistlers become undetectable. The maximum of whistler intensities is shifted from the satellite magnetic footprint ∼1 • owing to the oblique propagation. The average amplitude of whistlers increases with the lightning current. At nighttime (late evening), the average amplitude of whistlers is about three times higher than during the daytime (late morning) for the same lightning current.
Abstract.We study the penetration of lightning induced whistler waves through the ionosphere by investigating the correspondence between the whistlers observed on the DEMETER and MAGION-5 satellites and the lightning discharges detected by the European lightning detection network EUCLID. We compute all the possible differences between the times when the whistlers were observed on the satellite and times when the lightning discharges were detected. We show that the occurrence histogram for these time differences exhibits a distinct peak for a particular characteristic time, corresponding to the sum of the propagation time and a possible small time shift between the absolute time assigned to the wave record and the clock of the lightning detection network. Knowing this characteristic time, we can search in the EUCLID database for locations, currents, and polarities of causative lightning discharges corresponding to the individual whistlers. We demonstrate that the area in the ionosphere through which the electromagnetic energy induced by a lightning discharge enters into the magnetosphere as whistler mode waves is up to several thousands of kilometres wide.
Highly correlated internally contracted multireference configuration interaction wave functions are used to calculate the potential energy and spin-orbit coupling functions for the lowest electronic states of CO2+ dication. Using these functions, the positions and lifetimes of the corresponding vibronic states are evaluated by means of log-phase-amplitude, stabilization, and complex-scaling methods within the framework of a multichannel Schrodinger analysis. For the first time in the literature, the calculated lifetimes are in good agreement with the experiment, thereby proving the reliability of the predicted characteristics and adequacy of the used theory for a theoretical study of other molecular dications.
Applying metric (Banach-like) and topological (Schauder-like) fixed-point theorems, the existence of metric and topological fractals is respectively proved as (sub)invariant subsets of the Hutchinson–Barnsley map generated by a multifunction system. Weakly contractive and compact multifunction systems are considered, but systems of more general multifunctions are discussed as well. The notions of hyperspaces and AR-spaces are employed for this goal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.