We study positive bilinear forms on a Hilbert space which are neither not
necessarily bounded nor induced by some positive operator. We show when
different families of bilinear forms can be described as a generalized effect
algebra. In addition, we present families which are or are not monotone
downwards (Dedekind upwards) $\sigma$-complete generalized effect algebras
ABSTRACT. We continue in a direction of describing an algebraic structure of linear operators on infinite-dimensional complex Hilbert space H. In [Paseka, J.--Janda, J.: More on PT-symmetry in (generalized) effect algebras and partial groups, Acta Polytech. 51 (2011), 65-72] there is introduced the notion of a weakly ordered partial commutative group and showed that linear operators on H with restricted addition possess this structure. In our work, we are investigating the set of self-adjoint linear operators on H showing that with more restricted addition it also has the structure of a weakly ordered partial commutative group.
Group coextensions of monoids, which generalise Schreier-type extensions of groups, have originally been defined by P.A. Grillet and J. Leech. The present paper deals with pomonoids, that is, monoids that are endowed with a compatible partial order. Following the lines of the unordered case, we define pogroup coextensions of pomonoids. We furthermore generalise the construction to the case that pomonoids instead of pogroups are used as the extending structures. The intended application lies in fuzzy logic, where triangular norms are those binary operations that are commonly used to interpret the conjunction. We present conditions under which the coextension of a finite totally ordered monoid leads to a triangular norm. Triangular norms of a certain type can therefore be classified on the basis of the presented results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.