The subject of the paper is a description of a simple test from the field of terminal ballistics and the handling of issues arising during its simulation using the numerical techniques of the finite element method. With regard to the possible excessive reshaping of the finite element mesh there is a danger that problems will arise such as the locking of elements or the appearance of negative volumes. It is often necessary to introduce numerical extensions so that the simulations can be carried out at all. When examining local damage to structures, such as the penetration of the outer shell or its perforation, it is almost essential to introduce the numerical erosion of elements into the simulations. However, when using numerical erosion, the dissipation of matter and energy from the computational model occurs in the mathematical background to the calculation. It is a phenomenon which can reveal itself in the final result when a discrepancy appears between the simulations and the experiments. This issue can be solved by transforming the eroded elements into smoothed particle hydrodynamics particles. These newly created particles can then assume the characteristics of the original elements and preserve the matter and energy of the numerical model.
Abstract.A procedure for the numerical analysis of the dynamic response during the passage of railway vehicles is described. The solution is based on the finite element method (FEM), which is used for the calculation of track stresses. An FEM model was used with a fine structure that included all components of switches and crossings, including movable parts. The excitation forces are defined on the basis of the assumed interaction between track and vehicle. The track stiffness defined by FEM analyses is used for the calculation of dynamic vertical and lateral wheel load. A special model of a railway vehicle was built with the aim of calculating the forces at points where abrupt stiffness changes occur, as well as geometrical imperfections in the frog structure.
The paper analyzes the influence of initial imperfections on the ultimate limit state of a slender strut, applying the ANSYS programme. The geometrical and material nonlinear finite element method was applied for the theoretical analysis. Modelling of the steel structure was performed using SHELL elements. The effect of input imperfections on the load-carrying capacity is evaluated by sensitivity analysis. This paper is devoted to a class of sensitivity analysis techniques that are known as the variance-based methods. Input imperfections are of random origin. The Sobol's sensitivity analysis was used to determine the sensitivity of load-carrying capacity of a strut with respect to the variance of initial imperfections. The sensitivity analysis results identify the imperfections the variability of which can influence the structure reliability. The Latin Hypercube Sampling method was applied for the evaluation of sensitivity indices. The computation model elaborated is unique with regard to its numerically demanding character.
The study is divided into two parts: (i) in the first one, the plate girder (Fig 1) is considered to be exposed to quasi‐constant loading (ie to loads which are either constant or repeated in a very small number of cycles), while (ii) in the other one, the girder is assumed to be subjected to repeated loading. Then it is understandable that the objective of the first part should be to look into the influence of initial imperfections on the static ultimate load of the girder related to the formation of a plastic failure mechanism in it, while that of the second part was to study the effect of imperfections on the stress state under considerably lesser loads, viz under such as to correspond to the development of fatigue cracks in the girder and, consequently, to its fatigue limit state. In this case the state of stress was measured by bending stresses developing in the crack‐prone areas (Fig 4) of the web “breathing” under the repeated loads, which ‐as demonstrated by the Prague experiments ‐ occur at the toes of the fillet welds connecting the “breathing” web with the girder flanges and stiffeners. In both parts, the results of the theoretical investigation were compared with the conclusions of numerous tests carried out at the Institute of Theoretical and Applied Mechanics in Prague. The correlation was found to be very good; for example, the experimental load‐carrying capacity of the girders tested in Prague was close to the mean value of the corresponding theoretical solutions performed for the same girders. Thereby the analytical model applied in the theoretical investigation can be regarded as verified. The theoretical analysis was based on a non‐linear variant of the finite element method, the girder being modelled by means of shell elements and the ANSYS program being applied. All input imperfections were considered to be random quantities. The statistical distributions were introduced according to both experimentally obtained results and data given in literature. Random realisations of input random quantities were simulated by the LHS (Latin Hypercube Sampling) method. By way of sensitivity analysis it was studied to what extend the variability of initial imperfections was reflected in the variability of stresses in the crack‐prone areas of the girder. The main conclusion can be formulated as follows: While the effect of (and sensitivity to) the initial out‐of‐flatness of the girder web, in the case studied of a plate girder whose web is subjected to predominant shear, on the static load‐carrying capacity is (see the results of the first part of the study) very small (only a few p.c), the same effect on the stress state occurring in the crack‐prone areas of the “breathing” web under service loads can be (see the other part of the study) very important. This is also one of the main explanations of the large scatter of the results of the fatigue tests conducted in Prague.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.