The possibility to apply metal organic framework (MOF) based catalysts for oxidation reaction in gas phase was explored. Catalytic activity of the vanadium oxide catalyst incorporated in MIL-101(Cr) as support was investigated in gas phase ethanol oxidative dehydrogenation (EtOH-ODH) and compared to that of MIL-47(V) metal organic framework material containing vanadium as central metal in the framework structure and to a classical VOx/ZrO2 supported vanadium oxide catalyst. It was found that vanadium species, incorporated in MIL-101(Cr) support by a variant of vapor deposition method, are stabilized in the form of well dispersed VOx species (no vanadium pentoxide clusters was detected in the catalyst). The obtained VOx@MIL-101(Cr) catalyst exhibited high selectivity towards acetaldehyde (up to 99%) at reaction temperatures not exceeding 200°C. The catalytic activity of VOx@MIL-101(Cr) catalyst reached an activity level comparable to that of the classical VOx/ZrO2 catalyst, but the specific productivity of acetaldehyde (3 kgAA kgcat-1 h-1) was higher by 75% compared with productivity on VOx/ZrO2 due to much higher content of vanadium species, which could be hosted by the MOF. On the other hand, MIL-47(V) catalyst exhibited negligible activity seemingly due to coordinatively saturated character of the vanadium centers and/or too high stability of the V IV oxidation state. This proof-of-concept study proved that application of MOF materials as host matrices for heterogeneous catalysts aiming oxidation reaction in gas phase could be efficient as demonstrated on the example of oxidative dehydrogenation of ethanol.
The catalytic activity of zeolites is often related to their acid–base properties. In this work, the relationship between the value of apparent activation energy of ethanol dehydration, measured in a fixed bed reactor and by means of a temperature-programmed surface reaction (TPSR) depending on the amount of ethanol in the zeolite lattice and the value of activation energy of H/D exchange as a measure of acid–base properties of MFI and CHA zeolites, was studied. Tests in a fixed bed reactor were unable to provide reliable reaction kinetics data due to internal diffusion limitations and rapid catalyst deactivation. Only the TPSR method was able to provide activation energy values comparable to the activation energy values obtained from the H/D exchange rate measurements. In addition, for CHA zeolite, it has been shown that the values of ethanol dehydration activation energies depend on the amount of ethanol in the CHA framework, and this effect can be attributed to the substrate clustering effects supporting the deprotonation of zeolite Brønsted centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.