Accretion onto black holes and compact stars brings material in a zone of strong gravitational and electromagnetic fields. We study dynamical properties of motion of electrically charged particles forming a highly diluted medium (a corona) in the regime of strong gravity and large-scale (ordered) magnetic field.We start our work from a system that allows regular motion, then we focus on the onset of chaos. To this end, we investigate the case of a rotating black hole immersed in a weak, asymptotically uniform magnetic field. We also consider a magnetic star, approximated by the Schwarzschild metric and a test magnetic field of a rotating dipole. These are two model examples of systems permitting energetically bound, off-equatorial motion of matter confined to the halo lobes that encircle the central body. Our approach allows us to address the question of whether the spin parameter of the black hole plays any major role in determining the degree of the chaoticness.To characterize the motion, we construct the Recurrence Plots (RP) and we compare them with Poincaré surfaces of section. We describe the Recurrence Plots in terms of the Recurrence Quantification Analysis (RQA), which allows us to identify the transition between different dynamical regimes. We demonstrate that this new technique is able to detect the chaos onset very efficiently, and to provide its quantitative measure. The chaos typically occurs when the conserved energy is raised to a sufficiently high level that allows the particles to traverse the equatorial plane. We find that the role of the black-hole spin in setting the chaos is more complicated than initially thought.
We present a review of the influence of cosmic repulsion and external magnetic fields on accretion disks rotating around rotating black holes and on jets associated with these rotating configurations. We consider both geometrically thin and thick disks. We show that the vacuum energy represented by the relic cosmological constant strongly limits extension of the accretion disks that is for supermassive black holes comparable to extension of largest galaxies, and supports collimation of jets at large distances from the black hole. We further demonstrate that an external magnetic field crucially influences the fate of ionized Keplerian disks causing creation of winds and jets, enabling simultaneously acceleration of ultra-high energy particles with energy up to 10 21 eV around supermassive black holes with M ∼ 10 10 M ⊙ surrounded by sufficiently strong magnetic field with B ∼ 10 4 G. We also show that the external magnetic fields enable existence of “levitating” off-equatorial clouds or tori, along with the standard equatorial toroidal structures, if these carry a non-vanishing, appropriately distributed electric charge.
Abstract. Off-equatorial circular orbits with constant latitudes (halo orbits) of electrically charged particles exist near compact objects. In the previous paper, we discussed this kind of motion and demonstrated the existence of minima of the twodimensional effective potential which correspond to the stable halo orbits.Here, we relax previous assumptions of the pseudo-Newtonian approach for the gravitational field of the central body and study properties of the halo orbits in detail. Within the general relativistic approach, we carry out our calculations in two cases. Firstly, we examine the case of a rotating magnetic compact star. Assuming that the magnetic field axis and the rotation axis are aligned with each other, we study the orientation of motion along the stable halo orbits. In the poloidal plane, we also discuss shapes of the related effective potential halo lobes where the general offequatorial motion can be bound. Then we focus on the halo orbits near a Kerr black hole immersed in an asymptotically uniform magnetic field of external origin.We demonstrate that, in both the cases considered, the lobes exhibit two different regimes, namely, one where completely disjoint lobes occur symmetrically above and below the equatorial plane, and another where the lobes are joined across the plane. A possible application of the model concerns the structure of putative circumpulsar discs consisting of dust particles. We suggest that the particles can acquire a small (but non-zero) net electric charge, and this drives them to form the halo lobes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.