Interleukin-2 (IL-2) immunotherapy is an attractive approach in treating advanced cancer. However, by binding to its IL-2 receptor α (CD25) subunit, IL-2 exerts unwanted effects, including stimulation of immunosuppressive regulatory T cells (T) and contribution to vascular leak syndrome. We used a rational approach to develop a monoclonal antibody to human IL-2, termed NARA1, which acts as a high-affinity CD25 mimic, thereby minimizing association of IL-2 with CD25. The structure of the IL-2-NARA1 complex revealed that NARA1 occupies the CD25 epitope of IL-2 and precisely overlaps with CD25. Association of NARA1 with IL-2 occurs with 10-fold higher affinity compared to CD25 and forms IL-2/NARA1 complexes, which, in vivo, preferentially stimulate CD8 T cells while disfavoring CD25 T and improving the benefit-to-adverse effect ratio of IL-2. In two transplantable and one spontaneous metastatic melanoma model, IL-2/NARA1 complex immunotherapy resulted in efficient expansion of tumor-specific and polyclonal CD8 T cells. These CD8 T cells showed robust interferon-γ production and expressed low levels of exhaustion markers programmed cell death protein-1, lymphocyte activation gene-3, and T cell immunoglobulin and mucin domain-3. These effects resulted in potent anticancer immune responses and prolonged survival in the tumor models. Collectively, our data demonstrate that NARA1 acts as a CD25-mimobody that confers selectivity and increased potency to IL-2 and warrant further assessment of NARA1 as a therapeutic.
There is a pressing need for immunosuppressants with an improved safety profile. The search for novel approaches to blocking T-cell activation led to the development of the selective protein kinase C (PKC) inhibitor AEB071 (sotrastaurin). In cell-free kinase assays AEB071 inhibited PKC, with K i values in the subnanomolar to low nanomolar range. Upon T-cell stimulation, AEB071 markedly inhibited in situ PKC catalytic activity and selectively affected both the canonical nuclear factor-B and nuclear factor of activated T cells (but not activator protein-1) transactivation pathways. In primary human and mouse T cells, AEB071 treatment effectively abrogated at low nanomolar concentration markers of early T-cell activation, such as interleukin-2 secretion and CD25 expression. Accordingly, the CD3/CD28 antibody-and alloantigen-induced T-cell proliferation responses were potently inhibited by AEB071 in the absence of nonspecific antiproliferative effects. Unlike former PKC inhibitors, AEB071 did not enhance apoptosis of murine T-cell blasts in a model of activation-induced cell death. Furthermore, AEB071 markedly inhibited lymphocyte function-associated antigen-1-mediated T-cell adhesion at nanomolar concentrations. The mode of action of AEB071 is different from that of calcineurin inhibitors, and AEB071 and cyclosporine A seem to have complementary effects on T-cell signaling pathways.Phosphorylation of serine, threonine, and tyrosine residues is a primary mechanism for regulating protein function in eukaryotic cells. Protein kinases, the enzymes that catalyze these reactions, regulate essentially all cellular processes and have thus emerged as therapeutic targets for many human diseases. However, nearly all protein kinase inhibitors target the ATP binding site. For this reason, design of inhibitors that selectively target even a subset of the approximately 570 related human protein kinase domains continues to be a daunting challenge. Nevertheless, small-molecule inhibitors of Abelson tyrosine kinase and epidermal growth factor receptor have been recently developed into clinically useful anticancer drugs (for review, see Medinger and Drevs, 2005).The protein kinase C (PKC) family of serine/threonine kinases plays a central role in the adaptive immune system. PKC can be grouped into three categories according to the
The interaction of the chemokine receptor CXCR4 with its ligand CXCL12 is involved in many biological processes such as hematopoesis, migration of immune cells, as well as in cancer metastasis. CXCR4 also mediates the infection of T-cells with X4-tropic HIV functioning as a coreceptor for the viral envelope protein gp120. Here, we describe highly potent, selective CXCR4 inhibitors that block CXCR4/CXCL12 interactions in vitro and in vivo as well as the infection of target cells by X4-tropic HIV.
The transfer of maternal antibodies to the offspring and their inhibitory effects on active infant immunization is an important factor hampering the use of certain vaccines, such as measles or respiratory syncytial virus vaccine, in early infancy. The resulting delay in protection by conventional or novel vaccines may have significant public health consequences. To define immunization approaches which may circumvent this phenomenon, experiments were set up to further elucidate its immunological bases. The influence of maternal antibodies on antibody and T cell responses to measles hemagglutinin (MV-HA) were analyzed following MV-HA immunization of pups born to immune or control BALB/c mothers using four different antigen delivery systems: live or inactivated conventional measles vaccine, a live recombinant canarypox vector and a DNA vaccine. High levels (> 5 log10) of maternal anti-HA antibodies totally inhibited antibody responses to each of the vaccine constructs, whereas normal antibody responses were elicited in presence of lower titers of maternal antibodies. However, even high titers of maternal antibodies affected neither the induction of vaccine-specific Th1/Th2 responses, as assessed by proliferation and levels of IFN-gamma and IL-5 production, nor CTL responses in infant mice. On the basis of these unaltered T cell responses, very early priming and boosting (at 1 and 3 weeks of age, respectively) with live measles vaccine allowed to circumvent maternal antibody inhibition of antibody responses in pups of immune mothers. This was confirmed in another immunization model (tetanus toxoid). It suggests that effective vaccine responses may be obtained earlier in presence of maternal antibodies through the use of appropriate immunization strategies using conventional or novel vaccines for early priming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.