The interaction of IL1RAPL1 with PSD-95 discloses a novel pathophysiological mechanism of cognitive impairment associated with alterations of the JNK pathway leading to a mislocalization of PSD-95 and abnormal synaptic organization and function.
Many diseases of the nervous system are accompanied by alterations in synaptic functions. Synaptic plasticity mediated by the endogenous cannabinoid system involves the activation of the cannabinoid receptor 1 (CB1R). The principles of CB1R signaling must be understood in detail for its therapeutic exploration. We detected the Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1) as a novel CB1R partner. SGIP1 is functionally linked to clathrin-mediated endocytosis and its overexpression in animals leads to an energy regulation imbalance resulting in obesity. We report that SGIP1 prevents the endocytosis of activated CB1R and that it alters signaling via the CB1R in a biased manner. CB1R mediated G-protein activation is selectively influenced by SGIP1, β-arrestin associated signaling is changed profoundly, most likely as a consequence of the prevention of the receptor's internalization elicited by SGIP1.
Here we investigated consequences of interactions between long mGluR1a and short mGluR1b variants. Our results show, that mGluR1a interferes with mGluR1b trafficking to the cell surface in HEK293 transfected cells. Moreover, we show that swapping long mGluR1a and/or short mGluR1b C-termini with corresponding regions in chimerical GB1 and GB2 γ-amino butyric acid b (GABAb) receptor subunits does not exclude their heterodimerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.