While general trends in Central European postglacial recolonisation dynamics are relatively well known, we often lack studies on intermediate (metapopulation, landscape) scales. Such studies are needed to increase our understanding of, for example, the location of refugia; emergence of endemism, rates and trajectories of postglacial migrations; and anthropogenic landscape changes. Here, we focused on the outer Western Carpathian mountain chain Malá Fatra, which is currently characterised by high biodiversity and endemism and is thus considered a likely refugium of the Last Glacial period for the temperate biota of Eastern-Central Europe. We used molluscs and vascular plants as reference taxonomic groups and supported palaeoenvironmental interpretations of their (sub)fossil assemblages using high-resolution geochemical data. Generally, postglacial biotic successions from the study region fit the standard developmental pattern well in Middle and Eastern European uplands. Nevertheless, we found important biogeographically based peculiarities. In total, more than 50 species per (sub)fossil community at the reference site Valča, including 30 woodland species and 11 Carpathian endemites, make site of the highest known Holocene mollusc species diversity in Europe. Our palaeoecological analysis of this long-term biodiversity hotspot suggests that the Western Carpathians were likely an important source of the postglacial recolonisation of Central Europe by forest biota and, at the same time, an area of refugium-based endemism.
Deuterium enrichment of bulk water was measured and modeled in snowgum (Eucalyptus pauciflora Sieber ex Sprengel) leaves grown under contrasting air and soil humidity in arid and wet conditions in a glasshouse. A map of the enrichment was constructed with a resolution of 4 mm by using a newly designed cryodistillation method. There was progressively increasing enrichment in both longitudinal (along the leaf midrib) and transversal (perpendicular to the midrib) directions, most pronounced in the arid-grown leaf. The whole-leaf average of the enrichment was well below the value estimated by the Craig-Gordon model. The discrepancy between model and measurements persisted when the estimates were carried out separately for the leaf base and tip, which differed in temperature and stomatal conductance. The discrepancy was proportional to the transpiration rate, indicating the significance of diffusion-advection interplay (Péclet effect) of deuterium-containing water molecules in small veins close to the evaporating sites in the leaf. Combined Craig-Gordon and desert-river models, with or without the Péclet number, P, were used for predicting the leaf longitudinal enrichment. The predictions without P overestimated the measured values of ddeuterium. Fixed P value partially improved the coincidence. We suggest that P should vary along the leaf length l to reconcile the modeled data with observations of longitudinal enrichment. Local values of P, P(l), integrating the upstream fraction of water used or the leaf area, substantially improved the model predictions.
It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci-SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.