The intensity distribution of the ultrasonic energy is, after the frequency, the most significant parameter to characterize ultrasonic fields in any sonochemical experiment.Whereas in the case of low intensity ultrasound the measurement of intensity and its distribution is well solved, in the case of high intensity (when cavitation takes place) the measurement is much more complicated. That is why the predicting the acoustic pressure distribution within the cell is desirable.A numerical solution of the wave equation gave the distribution of intensity within the cell. The calculations together with experimental verification have shown that the whole reactor behaves like a resonator and the energy distribution depends strongly on its shape.The agreement between computational simulations and experiments allowed optimisation of the shape of the sonochemical reactor. The optimal geometry resulted in a 2 strong increase in intensity along a large part of the cell. The advantages of such optimised geometry are (i) the ultrasonic power necessary for obtaining cavitation is low, (ii) low power delivered to the system results in only weak heating; consequently no cooling is necessary and (iii) the "active volume" is large, i.e. the fraction of the reactor volume with high intensity is large and is not limited to a vicinity close to the horn tip.
Cyclic voltammetry of 31 icosahedral carborane anions 1-X-12-Y-CB(11)Me(10)(-) at a Pt electrode in liquid SO(2) revealed a completely reversible one-electron oxidation even at low scan rates, except for the anions with Y = I, which are oxidized irreversibly up to a scan rate of 5.0 V/s, and the anion with X = COOH and Y = H, whose oxidation is irreversible at scan rates below 1.0 V/s. Relative reversible oxidation potentials agree well with RI-B3LYP/TZVPP,COSMO and significantly less well with RI-BP86/TZVPP,COSMO or RI-HF/TZVPP,COSMO calculated adiabatic electron detachment energies. Correlations with HOMO energies of the anions are nearly as good, even though the oxidized forms are subject to considerable Jahn-Teller distortion. Except for the anion with X = F and Y = Me, the oxidation potentials vary linearly with substituent σ(p) Hammett constants. The slopes (reaction constants) are ~0.31 and ~0.55 V for positions 1 and 12, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.