Abstract. The mixing of two immiscible phases is a process commonly seen in many branches of industry. Whether it be desirable (e.g. mixing of ingredients in chemical or food industry) or undesirable (e.g. sediments or contaminants in water purification) process, it has to be taken into consideration and a detailed description would be beneficial to any end product. This paper deals with a method for observing the volume ratio of two immiscible phases from the state of total separation, during the mixing process until the state of a homogenous mixture using industrial Electrical Impedance Tomography (EIT) system ITS p2+. The paper also shows a great agreement between the data obtained through measurement using this method and data derived from a theoretical formula. Also using EIT the authors were able to provide additional information describing the mixing process in real time.
The mixing of two immiscible phases is a process commonly seen in many industrial applications. Whether it is desirable (e.g. mixing of ingredients in chemical or food industry) or undesirable (e.g. sediments or contaminants in water purification) process, it has to be taken into consideration and a detailed description would be beneficial to any end product. This paper deals with a method for observing the volume ratio of two immiscible phases from the state of total separation to the state of a homogenous mixture using industrial Electrical Impedance Tomography (EIT) system ITS p2+. This paper also shows a great advantage in combining the EIT measuring method with a theoretically derived formula. It is used to calculate the concentration of a non-conductive phase in the final mixture using the initial and final conductivity values. The authors were also able to show a possibility to successfully use the formula in situations, where the initial conditions for it are not fully met.
This paper deals with the airflow generation phenomenon occurring on a system of strongly asymmetrical electrodes connected to high DC voltage. The main focus was to measure the airflow directly between the electrodes using Particle Image Velocimetry. The authors are well aware of the many difficulties presented by the task of measuring in the presence of strong electric fields and the paper also describes the means used to overcome these issues. The results of performed measurements are presented, their agreement with theoretical description of given phenomenon is discussed and several possible practical applications are proposed.
This paper is focused on the research of airflow generating through the use of high-voltage electrohydrodynamic devices. For this purpose, the authors built several electrohydrodynamic airflow generators with one point electrode and one tube electrode of varying dimensions and compared their efficiency in generating the airflow in order to find an optimal design. The character of the flow was also analyzed with the help of particle image velocimetry, and velocity vector maps and velocity profile were acquired. In addition, a possible practical cooling application was proposed and realized with positive results. Lastly, the products present in the generated airflow were tested for ozone and nitrogen oxides, which could have detrimental effects on human health and material integrity. In both cases, the concentration has been found to be below permissible limits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.