The influence of geometry variations and solvent environment of N-methylacetamide on its energies and absorption intensities was systematically analyzed with the aid of the time-dependent density functional theory (TD DFT). Selective and often complicated reactions of individual electronic levels on the perturbations were found important for the resultant spectral profile. For example, the n-pi band position varied by tens of nanometers due to the C=O bond length oscillations, while it was rather unaffected by surrounding water. On the contrary, pi-pi type transition energies and intensities were broadly dispersed by the aqueous environment but exhibited a modest coordinate dependence. A simple electrostatic model used previously for absorption in the IR region (J. Chem. Phys. 2005, 122, 144501) explained these changes only partially. Additionally, electronic transfer between the solute and the solvent had to be considered for faithful modeling of the ultraviolet light absorption. The inclusion of the environment and dynamics in the modeling then provided more accurate positions, intensities, and realistic inhomogeneous widths of spectral lines. These factors were found important for absorption and circular dichroism spectra of larger peptides and proteins. This was demonstrated with a combined DFT/coupled oscillator model providing principal features observed in electronic circular dichroism spectra of standard peptide conformations.
Electronic absorption and synchrotron radiation circular dichroism (SRCD) spectra of the anionic, cationic, and zwitterionic forms of L-alanyl-L-alanine (AA) in aqueous solutions were measured and interpreted by molecular dynamics (MD) and ab initio computations. Time-dependent density functional theory (TD DFT) was applied to predict the electronic excited states. The modeling enabled the assessment of the role of molecular conformation, charge, and interaction with the polar environment in the formation of the spectral shapes. Particularly, inclusion of explicit solvent molecules in the computations appeared to be imperative because of the participation of water orbitals in the amide electronic structure. Implicit dielectric continuum solvent models gave inferior results for clusters, especially at low-energy transitions. Because of the dispersion of transition energies, tens of water/AA clusters had to be averaged in order to obtain reasonable spectral shapes with a more realistic inhomogeneous broadening. The modeling explained most of the observed differences, as the anionic and zwitterionic SRCD spectra were similar and significantly different from the cationic spectrum. The greatest deviation between the experimental and theoretical curves observed for the lowest-energy negative anion signal can be explained by the limited precision of the TD DFT method, but also by the complex dynamics of the amine group. The results also indicate that differences in the experimental spectral shapes do not directly correlate with the peptide main-chain conformation. Future peptide and protein conformational studies based on circular dichroic spectroscopy can be reliable only if such effects of molecular dynamics, solvent structure, and polar solvent-solute interactions are taken into account.
First-principles anharmonic vibrational calculations are carried out for the Raman spectrum of the C–H stretching bands in dodecane, and for the C–D bands in the deuterated molecule. The calculations use the Vibrational Self-Consistent Field (VSCF) algorithm. The results are compared with liquid-state experiments, after smoothing the isolated-molecule sharp-line computed spectra. Very good agreement between the computed and experimental results is found for the two systems. The combined theoretical and experimental results provide insights into the spectrum, elucidating the roles of symmetric and asymmetric CH3 and CH2 hydrogenic stretches. This is expected to be very useful for the interpretation of spectra of long-chain hydrocarbons. The results show that anharmonic effects on the spectrum are large. On the other hand, vibrational degeneracy effects seem to be rather modest at the resolution of the experiments. The degeneracy effects may have more pronounced manifestations in higher-resolution experiments. The results show that first-principles anharmonic vibrational calculations for hydrocarbons are feasible, in good agreement with experiment, opening the way for applications to many similar systems. The results may be useful for the analysis of CARS imaging of lipids, for which dodecane is a representative molecule. It is suggested that first-principles vibrational calculations may be useful also for CARS imaging of other systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.