We introduce a novel technique for finding real errors in programs. The technique is based on a synergy of three well-known methods: metacompilation, slicing, and symbolic execution. More precisely, we instrument a given program with a code that tracks runs of state machines representing various kinds of errors. Next we slice the program to reduce its size without affecting runs of state machines. And then we symbolically execute the sliced program. Depending on the kind of symbolic execution, the technique can be applied as a stand-alone bug finding technique, or to weed out some false positives from an output of another bug-finding tool. We provide several examples demonstrating the practical applicability of our technique.
Abstract. We introduce a novel technique for checking properties described by finite state machines. The technique is based on a synergy of three well-known methods: instrumentation, program slicing, and symbolic execution. More precisely, we instrument a given program with a code that tracks runs of state machines representing various properties. Next we slice the program to reduce its size without affecting runs of state machines. And then we symbolically execute the sliced program to find real violations of the checked properties, i.e. real bugs. Depending on the kind of symbolic execution, the technique can be applied as a stand-alone bug finding technique, or to weed out some false positives from an output of another bug-finding tool. We provide several examples demonstrating the practical applicability of our technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.