Symbiotic nitrogen-fixing root nodules on legumes are founded by root cortical cells that de-differentiate and restart cell division to establish nodule primordia. Bacterial microsymbionts invade these primordia through infection threads laid down by the plant and, after endocytosis, membrane-enclosed bacteroids occupy cells in the nitrogen-fixing tissue of functional nodules. The bacteria excrete lipochitin oligosaccharides, triggering a developmental process that is controlled by the plant and can be suppressed. Nodule inception initially relies on cell competence in a narrow infection zone located just behind the growing root tip. Older nodules then regulate the number of nodules on a root system by suppressing the development of nodule primordia. To identify the regulatory components that act early in nodule induction, we characterized a transposon-tagged Lotus japonicus mutant, nin (for nodule inception), arrested at the stage of bacterial recognition. We show that nin is required for the formation of infection threads and the initiation of primordia. NIN protein has regional similarity to transcription factors, and the predicted DNA-binding/dimerization domain identifies and typifies a consensus motif conserved in plant proteins with a function in nitrogen-controlled development.
Blackleg, caused by Leptosphaeria maculans, is one of the most important diseases of oilseed and vegetable crucifiers worldwide. The present study describes (1) the construction of a genetic linkage map, comprising 255 markers, based upon simple sequence repeats (SSR), sequence-related amplified polymorphism, sequence tagged sites, and EST-SSRs and (2) the localization of qualitative (race-specific) and quantitative (race non-specific) trait loci controlling blackleg resistance in a doubled-haploid population derived from the Australian canola (Brassica napus L.) cultivars Skipton and Ag-Spectrum using the whole-genome average interval mapping approach. Marker regression analyses revealed that at least 14 genomic regions with LOD ≥ 2.0 were associated with qualitative and quantitative blackleg resistance, explaining 4.6-88.9 % of genotypic variation. A major qualitative locus, designated RlmSkipton (Rlm4), was mapped on chromosome A7, within 0.8 cM of the SSR marker Xbrms075. Alignment of the molecular markers underlying this QTL region with the genome sequence data of B. rapa L. suggests that RlmSkipton is located approximately 80 kb from the Xbrms075 locus. Molecular marker-RlmSkipton linkage was further validated in an F(2) population from Skipton/Ag-Spectrum. Our results show that SSR markers linked to consistent genomic regions are suitable for enrichment of favourable alleles for blackleg resistance in canola breeding programs.
SummaryAll lateral organ development in plants, such as nodulation in legumes, requires the temporal and spatial regulation of genes and gene networks. A total mRNA profiling approach using RNA-seq to target the specific soybean (Glycine max) root tissues responding to compatible rhizobia [i.e. the Zone Of Nodulation (ZON)] revealed a large number of novel, often transient, mRNA changes occurring during the early stages of nodulation. Focusing on the ZON enabled us to discard the majority of root tissues and their developmentally diverse gene transcripts, thereby highlighting the lowly and transiently expressed nodulation-specific genes. It also enabled us to concentrate on a precise moment in early nodule development at each sampling time. We focused on discovering genes regulated specifically by the Bradyrhizobiumproduced Nod factor signal, by inoculating roots with either a competent wild-type or incompetent mutant (nodC ) ) strain of Bradyrhizobium japonicum. Collectively, 2915 genes were identified as being differentially expressed, including many known soybean nodulation genes. A number of unknown nodulation gene candidates and soybean orthologues of nodulation genes previously reported in other legume species were also identified. The differential expression of several candidates was confirmed and further characterized via inoculation time-course studies and qRT-PCR. The expression of many genes, including an endo-1,4-bglucanase, a cytochrome P450 and a TIR-LRR-NBS receptor kinase, was transient, peaking quickly during the initiation of nodule ontogeny. Additional genes were found to be downregulated. Significantly, a set of differentially regulated genes acting in the gibberellic acid (GA) biosynthesis pathway was discovered, suggesting a novel role of GAs in nodulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.