Small, apolar aromatic groups, such as phenyl rings, are commonly included in the structures of fluorophores to impart hindered intramolecular rotations, leading to desirable solid-state luminescence properties. However, they are not normally considered to take part in through-space interactions that influence the fluorescent output. Here, we report on the photoluminescence properties of a series of phenyl-ring molecular rotors bearing three, five, six, and seven phenyl groups. The fluorescent emissions from two of the rotors are found to originate, not from the localized excited state as one might expect, but from unanticipated through-space aromatic-dimer states. We demonstrate that these relaxed dimer states can form as a result of intra- or intermolecular interactions across a range of environments in solution and solid samples, including conditions that promote aggregation-induced emission. Computational modeling also suggests that the formation of aromatic-dimer excited states may account for the photophysical properties of a previously reported luminogen. These results imply, therefore, that this is a general phenomenon that should be taken into account when designing and interpreting the fluorescent outputs of luminescent probes and optoelectronic devices based on fluorescent molecular rotors.
Succeeding graphene, monoelemental two-dimensional (2D) materials such as germanene and silicene, coined as "Xenes", have attracted vast scientific and technological interests. Adding covalently bonded hydrogen on both sides of germanene leads to germanane (i.e., hydrogen-terminated germanene, GeH). Further, the covalent functionalization of germanane allows the tuning of its physical and chemical properties. Diverse variants of germananes have been synthesized, but current research is primarily focused on their fundamental properties. As a case in point, their applications as photo-and electrocatalysts in the field of modern energy conversion have not been explored. Here, we prepare 2D germanene-based materials, specifically germanane and germananes functionalized by various alkyl chains with different terminal groupsgermanane with methyl, propyl, hydroxypropyl, and 2-(methoxycarbonyl)ethyland investigate their structural, morphological, optical, electronic, and electrochemical properties. The bond geometries of the functionalized structures, their formation energies, and band gap values are investigated by density functional theory calculations. The functionalized germananes are tested as photoelectrocatalysts in the hydrogen evolution reaction (HER) and photo-oxidation of water. The performance of the germananes is influenced by the functionalized groups, where the germanane with −CH 2 CH 2 CH 2 OH termination records the lowest HER overpotentials and with −H termination reaches the highest photocurrent densities for water oxidation over the entire visible spectral region. These positive findings serve as an overview of organic functionalization of 2D germananes that can be expanded to other "Xanes" for targeted tuning of the optical and electronic properties for photo-and electrochemical energy conversion applications.
The chemistry of graphene and its derivatives is one of the hottest topics of current material science research. The derivatisation of graphene is based on various approaches, and to date functionalization with halogens, hydrogen, various functional groups containing oxygen, sulfur, nitrogen, phosphorus, boron, and several other elements have been reported. Most of these functionalizations are based on sp hybridization of carbon atoms in the graphene skeleton, which means the formation of out-of-plane covalent bonds. Several elements were also reported for substitutional modification of graphene, where the carbon atoms are substituted with atoms like nitrogen, boron, and several others. From tens of functional groups, for only two of them were reported full functionalization of graphene skeleton and formation of its stoichiometric counterparts, fluorographene and hydrogenated graphene. The functionalization of graphene is crucial for most of its applications including energy storage and conversion devices, electronic and optic applications, composites, and many others.
Two-dimensional materials attract enormous attention across several scientific fields. The current demands in nano- and optoelectronics, semiconductors, or in catalysis have been accelerating the research process in the field of 2D materials. Among the 14th group 2D materials besides graphene and silicene, layered germanium represents a promising candidate for another class of materials, and its functionalization represents a way to tune either its electronic or optical properties. Here, the exfoliation and functionalization of germanane surface is achieved via abstraction of hydrogen from Ge–H bond and its subsequent alkylation utilizing n-alkyl halides or trifluoromethyl (CF3) group containing benzyl halides. Composition of materials is confirmed by several methods including FT-IR, Raman, X-ray photoelectron, and energy-dispersive X-ray spectroscopy as well as X-ray powder diffraction. Scanning and transmission electron spectroscopy is used to reveal the layered morphology of functionalized germananes.
A series of monosubstituted pyrimidinium and pyrazinium triflates and 3,5-disubstituted pyridinium triflates were prepared and tested as simple catalysts of oxidations with hydrogen peroxide, using sulfoxidation as a model reaction. Their catalytic efficiency strongly depends on the type of substituent and is remarkable for derivatives with an electron-withdrawing group, showing reactivity comparable to that of flavinium salts which are the prominent organocatalysts for oxygenations. Because of their high stability and good accessibility, 4-(trifluoromethyl)pyrimidinium and 3,5-dinitropyridinium triflates are the catalysts of choice and were shown to catalyze oxidation of aliphatic and aromatic sulfides to sulfoxides, giving quantitative conversions, high preparative yields and excellent chemoselectivity. The high efficiency of electron-poor heteroarenium salts is rationalized by their ability to readily form adducts with nucleophiles, as documented by low pKR+ values (pKR+ < 5) and less negative reduction potentials (Ered > -0.5 V). Hydrogen peroxide adducts formed in situ during catalytic oxidation act as substrate oxidizing agents. The Gibbs free energies of oxygen transfer from these heterocyclic hydroperoxides to thioanisole, obtained by calculations at the B3LYP/6-311++g(d,p) level, showed that they are much stronger oxidizing agents than alkyl hydroperoxides and in some cases are almost comparable to derivatives of flavin hydroperoxide acting as oxidizing agents in monooxygenases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.