Combustion processes, including the use of solid fuels for residential heating, are a widespread custom for many households. Residential heating is a significant source of ambient air pollution, yet it varies greatly by geography, meteorologic conditions, the prevalence of the type of solid fuel and the technologies used. This study evaluates whether residential heating affects the air quality through modelling three given scenarios of solid fuel boiler exchange at selected locations and comparing the results with measured data. The findings of this study suggest that according to the modelled data, the main air pollution contributor is residential heating since Dolni Lhota (daily average of PM10 = 44.13 μg·m−3) and Kravare (daily average of PM10 = 43.98 μg·m−3) are locations with no industry in contrast to heavily industrial Vratimov (daily average of PM10 = 34.38 μg·m−3), which were modelled for the heating season situation. Nevertheless, actual measurements of PM10 during the same period suggest that the average levels of air pollution were significantly higher than the modelled values for Dolni Lhota by 64% and for Kravare by 51%. Thus, it was assumed that PM long-range or/and transboundary transports were involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.