Image compression has been investigated as a fundamental research topic for many decades. Recently, deep learning has achieved great success in many computer vision tasks, and is gradually being used in image compression. In this paper, we present a lossy image compression architecture, which utilizes the advantages of convolutional autoencoder (CAE) to achieve a high coding efficiency. First, we design a novel CAE architecture to replace the conventional transforms and train this CAE using a rate-distortion loss function. Second, to generate a more energycompact representation, we utilize the principal components analysis (PCA) to rotate the feature maps produced by the CAE, and then apply the quantization and entropy coder to generate the codes. Experimental results demonstrate that our method outperforms traditional image coding algorithms, by achieving a 13.7% BD-rate decrement on the Kodak database images compared to JPEG2000. Besides, our method maintains a moderate complexity similar to JPEG2000.
Compression has been an important research topic for many decades, to produce a significant impact on data transmission and storage. Recent advances have shown a great potential of learning image and video compression. Inspired from related works, in this paper, we present an image compression architecture using a convolutional autoencoder, and then generalize image compression to video compression, by adding an interpolation loop into both encoder and decoder sides. Our basic idea is to realize spatial-temporal energy compaction in learning image and video compression. Thereby, we propose to add a spatial energy compaction-based penalty into loss function, to achieve higher image compression performance. Furthermore, based on temporal energy distribution, we propose to select the number of frames in one interpolation loop, adapting to the motion characteristics of video contents. Experimental results demonstrate that our proposed image compression outperforms the latest image compression standard with MS-SSIM quality metric, and provides higher performance compared with state-of-the-art learning compression methods at high bit rates, which benefits from our spatial energy compaction approach. Meanwhile, our proposed video compression approach with temporal energy compaction can significantly outperform MPEG-4 and is competitive with commonly used H.264. Both our image and video compression can produce more visually pleasant results than traditional standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.