Pilot plant studies were carried out using actual wastewater to investigate the applicability of a membrane separation activated sludge (MSAS) process to municipal wastewater treatment. A small-scale pilot plant (6.7 m3/day) with immersed flat sheet membrane was operated at the flux of 0.4 m3/m2/day. Continuous operation for 140 days without chemical cleaning was possible. Average Sludge production ratio was about 0.6. No significant difference was observed in the dewaterability between membrane separation activated sludge and conventional activated sludge at the CST test. Large-scale pilot plants (30–70 m3/day) with five types of membrane were also operated. In these plants nitrogen removal by nitrification and denitrification, and phosphorus removal by coagulant addition were carried out. Stable operation with HRT of six hours, flux of 0.4–0.8 m3/m2/day was possible, the average nitrogen and phosphorus removal efficiency being more than 80 and 95%, respectively.
A pilot-scale sustainable hydrogen production system using reverse electrodialysis (RED) technology was launched. The system is based on direct conversion of salinity gradient energy (SGE) between seawater (SW) and sewage treated water (STW) to hydrogen production by water electrolysis. The hydrogen production rate was almost the same as the theoretical value. This indicates that the RED hydrogen production system can convert SGE between SW and STW to hydrogen energy at high current efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.