We consider a buyer’s decision problem of sustainable supplier selection and order allocation (SSS & OA) among multiple heterogeneous suppliers who sell multiple types of items. The buyer periodically orders items from chosen suppliers to refill inventory to preset levels. Each supplier is differentiated from others by the types of items supplied, selling price, and order-related costs, such as transportation cost. Each supplier also has a preset requirement for minimum order quantity or minimum purchase amount. In the beginning of each period, the buyer constructs an SSS & OA plan considering various information from both parties. The buyer’s planning problem is formulated as a mathematical model, and an efficient algorithm to solve larger instances of the problem is developed. The algorithm is designed to take advantage of the branch-and-bound method, and the special structure of the model. We perform computer experiments to test the accuracy of the proposed algorithm. The test result confirmed that the algorithm can find a near-optimal solution with only 0.82 percent deviation on average. We also observed that the use of the algorithm can increase solvable problem size by about 2.4 times.
Product demand forecasting plays a vital role in supply chain management since it is directly related to the profit of the company. According to companies’ concerns regarding product demand forecasting, many researchers have developed various forecasting models in order to improve accuracy. We propose a hybrid forecasting model called GA-GRU, which combines Genetic Algorithm (GA) with Gated Recurrent Unit (GRU). Because many hyperparameters of GRU affect its performance, we utilize GA that finds five kinds of hyperparameters of GRU including window size, number of neurons in the hidden state, batch size, epoch size, and initial learning rate. To validate the effectiveness of GA-GRU, this paper includes three experiments: comparing GA-GRU with other forecasting models, k-fold cross-validation, and sensitive analysis of the GA parameters. During each experiment, we use root mean square error and mean absolute error for calculating the accuracy of the forecasting models. The result shows that GA-GRU obtains better percent deviations than other forecasting models, suggesting setting the mutation factor of 0.015 and the crossover probability of 0.70. In short, we observe that GA-GRU can optimally set five types of hyperparameters and obtain the highest forecasting accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.