Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease that typically features a dramatic desmoplastic reaction, especially fibroblasts. The roles of cancer-associated fibroblasts (CAFs) in PDAC have received more attention in recent years. As increasing evidence suggests the heterogeneity of CAFs in PDAC, different CAF subtypes have been shown to support tumor growth, while others suppress cancer proliferation. Myofibrotic CAFs (myCAFs) show alpha-smooth muscle actin (α-SMA)high interleukin-6 (IL-6)low myofibroblastic features, are activated by direct contact with tumor cells, and are located in the periglandular region. Inflammatory CAFs (iCAFs) show α-SMAlow IL-6high inflammatory features, are activated by paracrine factors secreted from tumor cells, and are located away from cancer cells. Antigen-presenting CAFs (apCAFs) show major histocompatibility complex II (MHC II) family genes that are highly expressed. CAFs have also been gradually explored as diagnostic and prognostic markers in pancreatic cancer. Targeted therapy of CAFs in PDAC has gradually attracted attention. With the deepening of related studies, some meaningful positive and negative results have surfaced, and CAFs may be the key to unlocking the door to pancreatic cancer treatment. Our review summarizes recent advances in the heterogeneity, function, and markers of CAFs in pancreatic cancer, as well as research and treatment targeting CAFs in pancreatic cancer.
Oncogenes contribute to tumorigenesis by promoting growth and inhibiting apoptosis. Here we examine the function of Sch9, the Saccharomyces cerevisiae homologue of the mammalian Akt and S6 kinase, in DNA damage and genomic instability during aging in nondividing cells. Attenuation of age-dependent increases in base substitutions, small DNA insertions/deletions, and gross chromosomal rearrangements (GCRs) in sch9Δ mutants is associated with increased mitochondrial superoxide dismutase (MnSOD) expression, decreased DNA oxidation, reduced REV1 expression and translesion synthesis, and elevated resistance to oxidative stress-induced mutagenesis. Deletion of REV1, the lack of components of the error-prone Polζ, or the overexpression of SOD1 or SOD2 is sufficient to reduce age-dependent point mutations in SCH9 overexpressors, but REV1 deficiency causes a major increase in GCRs. These results suggest that the proto-oncogene homologue Sch9 promotes the accumulation of superoxide-dependent DNA damage in nondividing cells, which induces error-prone DNA repair that generates point mutations to avoid GCRs and cell death during the first round of replication.
Metastasis remains one of the most intractable challenges in pancreatic ductal adenocarcinoma (PDAC) biology, and epithelial-to-mesenchymal transition (EMT) is essential to the epithelium-originated solid tumor metastasis cascade. Emerging evidence demonstrates that aberrant miRNA expression is involved in pancreatic cancer progression. We found that miR-361-3p was associated with an advanced stage of PDAC and poor prognosis. Hence, the effect of miR-361-3p on metastasis of PDAC cells was evaluated using Transwell assay and wound healing assay in vitro as well as orthotopic and liver metastasis pancreatic cancer models in vivo. Overexpression of miR-361-3p promoted pancreatic cancer cell migration and invasion in vitro, and miR-361-3p-elevated PDAC cells were prone to generating metastatic nodules in vivo. However, miR-361-3p showed no significant effect on the proliferation of PDAC cells in vivo or in vitro. Further study demonstrated that miR-361-3p could enhance EMT and ERK pathway activation, and ERK inhibitor could attenuate miR-361-3p-induced EMT. Luciferase assays, qPCR, and western blot and Ago2 co-immunoprecipitation were performed to identify the direct target of miR-361-3p. Mechanistic investigations identified DUSP2 as a direct target of miR-361-3p, and DUSP2 was revealed to be involved in miR-361-3p-induced EMT by directly leading to the inactivation of the ERK pathway. Moreover, we found that miR-361-3p-induced EMT was dependent on Ago2, the core component of RNA-induced silencing complex, while enforced expression of Ago2 enhanced the miR-361-3p-induced effect by promoting interference efficacy and specificity rather than regulating miR-361-3p stability and biogenesis. Thus, this study revealed that miR-361-3p functions as an oncomiR for promoting metastasis and identified the miR-361-3p/DUSP2/ERK axis as a novel EMT axis dependent on Ago2 in PDAC.
Background Ubiquitin-like protein 4A (UBL4A) plays a significant role in protein metabolism and the maintenance of cellular homeostasis. In cancer, UBL4A represses tumorigenesis and is involved in various signaling pathways. Pancreatic ductal adenocarcinoma (PDAC) is still a major cause of cancer-related death and the underlying molecular mechanism of UBL4A and PDAC remains unknown. Methods First, the prognostic role of UBL4A and its expression in human PDAC patients and in pancreatic cancer cell lines were detected by survival analysis and qRT-PCR, western blotting, and immunohistochemistry. Next, the effects of UBL4A on proliferation and metastasis in pancreatic cancer were evaluated by functional assays in vitro and in vivo. In addition, chloroquine was introduced to determine the role of autophagy in UBL4A-related tumor proliferation and metastasis. Ultimately, coimmunoprecipitation was used to confirm the interaction between UBL4A and lysosome associated membrane protein-1 (LAMP1), and western blotting was performed to explore the UBL4A mechanism. Results We found that UBL4A was decreased in PDAC and that high levels of UBL4A correlated with a favorable prognosis. We observed that UBL4A inhibited tumor proliferation and metastasis through suppression of autophagy, a critical intracellular catabolic process that reportedly protects cells from nutrient starvation and other stress conditions. UBL4A caused impaired autophagic degradation in vitro, a crucial process in autophagy, by disturbing the function of lysosomes and contributing to autophagosome accumulation. We found a positive correlation between UBL4A and LAMP1. Furthermore, UBL4A caused lysosomal dysfunction by directly interacting with LAMP1, and LAMP1 overexpression reversed the antitumor effects of UBL4A in pancreatic cancer. In addition, we demonstrated that UBL4A suppressed tumor growth and metastasis in a pancreatic orthotopic tumor model. Conclusions These findings suggest that UBL4A exerts an antitumor effect on autophagy-related proliferation and metastasis in PDAC by directly targeting LAMP1. Herein, we describe a novel mechanism of UBL4A that suppresses the progression of pancreatic cancer. UBL4A might be a promising target for the treatment and prognostication of PDAC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1278-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.