Global 21-cm experiments require exquisitely precise calibration of the measurement systems in order to separate the weak 21-cm signal from Galactic and extragalactic foregrounds as well as instrumental systematics. Hitherto, experiments aiming to make this measurement have concentrated on measuring this signal using the single element approach. However, an alternative approach based on interferometers with short baselines is expected to alleviate some of the difficulties associated with a single element approach such as precision modelling of the receiver noise spectrum. Short spacing Interferometer Telescope probing cosmic dAwn and epoch of ReionisAtion (SITARA) is a short spacing interferometer deployed at the Murchison Radio-astronomy Observatory (MRO). It is intended to be a prototype or a test-bed to gain a better understanding of interferometry at short baselines, and develop tools to perform observations and data calibration. In this paper, we provide a description of the SITARA system and its deployment at the MRO, and discuss strategies developed to calibrate SITARA. We touch upon certain systematics seen in SITARA data and their modelling. We find that SITARA has sensitivity to all sky signals as well as non-negligible noise coupling between the antennas. It is seen that the coupled receiver noise has a spectral shape that broadly matches the theoretical calculations reported in prior works. We also find that when appropriately modified antenna radiation patterns taking into account the effects of mutual coupling are used, the measured data are well modelled by the standard visibility equation.
Understanding the temporal characteristics of data from low frequency radio telescopes is of importance in devising suitable calibration strategies. Application of time series analysis techniques to data from radio telescopes can reveal a wealth of information that can aid in calibration. In this paper, we investigate singular spectrum analysis (SSA) as an analysis tool for radio data. We show the intimate connection between SSA and Fourier techniques. We develop the relevant mathematics starting with an idealised periodic dataset and proceeding to include various non-ideal behaviours. We propose a novel technique to obtain long-term gain changes in data, leveraging the periodicity arising from sky drift through the antenna beams. We also simulate several plausible scenarios and apply the techniques to a 30-day time series data collected during June 2021 from SITARA - a short-spacing two element interferometer for global 21–cm detection. Applying the techniques to real data, we find that the first reconstructed component - the trend - has a strong anti-correlation with the local temperature suggesting temperature fluctuations as the most likely origin for the observed variations in the data. We also study the limitations of the calibration in the presence of diurnal gain variations and find that such variations are the likely impediment to calibrating SITARA data with SSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.