In recent years reusable and highly active metal-nanoparticle catalysts were developed for the selective transformation of hydrosilanes into the corresponding silanols using water as the oxidant. The catalysts are much more active than conventional homogeneous ones under ambient conditions. In this perspective, we summarize known catalyst systems as well as stoichiometric methods for the synthesis of silanols from hydrosilanes. Plausible pathways for the hydrolytic oxidation of hydrosilanes on metal nanoparticles are described on the basis of the observations of mechanistic studies, including Si−H bond activation, nucleophilic attack of water (or silanol) at the silicon bonded to metal, and the liberation of silanol (or disiloxane) products. The applications of silanols are classified into usages in organic synthesis and silicon-based materials. Silanols were employed as nucleophilic partners in transitionmetal catalyzed carbon−carbon cross-coupling reactions, organocatalysts for activating carbonyl compounds, intramolecular guiding groups for C−H bond activation reactions, inhibitors of enzymes, and isosteres of bioactive compounds. Various polymeric siliconbased materials were synthesized by the activation of Si−H bonds in bis-trihydrosilanes, bis-hydrosilanes, and polyhedral oligomeric silsesquioxanes (POSS).
Photothermal therapy using inorganic nanoparticles (NPs) is a promising technique for the selective treatment of tumor cells because of their capability to convert the absorbed radiation into heat energy. Although anisotropic gold (Au) NPs present an excellent photothermal effect, the poor structural stability during storage and/or upon laser irradiation still limits their practical application as efficient photothermal agents. With the aim of improving the stability, in this work we adopted biocompatible polypyrrole (PPy) as the shell material for coating urchinlike Au NPs. The experimental results indicate that a several nanometer PPy shell is enough to maintain the structural stability of NPs. In comparison to the bare NPs, PPy-coated NPs exhibit improved structural stability toward storage, heat, pH, and laser irradiation. In addition, the thin shell of PPy also enhances the photothermal transduction efficiency (η) of PPy-coated Au NPs, resulting from the absorption of PPy in the red and near-infrared (NIR) regions. For example, the PPy-coated Au NPs with an Au core diameter of 120 nm and a PPy shell of 6.0 nm exhibit an η of 24.0% at 808 nm, which is much higher than that of bare Au NPs (η = 11.0%). As a primary attempt at photothermal therapy, the PPy-coated Au NPs with a 6.0 nm PPy shell exhibit an 80% death rate of Hela cells under 808 nm NIR laser irradiation.
Stable protein one (SP1) has been demonstrated as an appealing building block to design highly ordered architectures, despite the hybrid assembly with other nano-objects still being a challenge. Herein, we developed a strategy to construct high-ordered protein nanostructures by electrostatic self-assembly of cricoid protein nanorings and globular quantum dots (QDs). Using multielectrostatic interactions between 12mer protein nanoring SP1 and oppositely charged CdTe QDs, highly ordered nanowires with sandwich structure were achieved by hybridized self-assembly. QDs with different sizes (QD1, 3-4 nm; QD2, 5-6 nm; QD3, ∼10 nm) would induce the self-assembly protein rings into various nanowires, subsequent bundles, and irregular networks in aqueous solution. Atomic force microscopy, transmission electron microscopy, and dynamic light scattering characterizations confirmed that the size of QDs and the structural topology of the nanoring play critical functions in the formation of the superstructures. Furthermore, an ordered arrangement of QDs provides an ideal scaffold for designing the light-harvesting antenna. Most importantly, when different sized QDs (e.g., QD1 and QD3) self-assembled with SP1, an extremely efficient Förster resonance energy transfer was observed on these protein nanowires. The self-assembled protein nanostructures were demonstrated as a promising scaffold for the development of an artificial light-harvesting system.
This review article summarizes recent progress in the fabrication methodologies and functional modulations of nanoparticle (NP)–polymer composites. On the basis of the techniques of NP synthesis and surface modification, the fabrication methods of nanocomposites are highlighted; these include surface‐initiated polymerization on NPs, in situ formation of NPs in polymer media, and the incorporation through covalent linkages and supramolecular assemblies. In these examples, polymers are foremost hypothesized as inert hosts that stabilize and integrate the functionalities of NPs, thus improving the macroscopic performance of NPs. Furthermore, due to the unique physicochemical properties of polymers, polymer chains are also dynamic under heating, swelling, and stretching. This creates an opportunity for modulating NP functionalities within the preformed nanocomposites, which will undoubtedly promote the developments of optoelectronic devices, optical materials, and intelligent materials.
In this article, the experimental variable-dependent photoluminescence (PL) evolution of transition-metal-doped ZnSe nanocrystals (NCs) is analyzed by combining the redox reaction and the electrostatics of aqueous NCs. Bulk doping of NCs involves two steps − surface adsorption of the metal impurities and the followed internal doping. The former relates to the electrostatics of aqueous NCs, whereas the latter relates to a redox reaction between the impurities and mercapto-ligands. Both of them occur on the NC surface. In this context, aqueous NCs are essentially charge-stabilized particles. The electrostatic factors that weaken the electrostatic repulsion will facilitate the adsorption of metal impurities on NC surfaces, thus benefiting the surface redox reaction. It furthermore promotes the internal doping of the metal impurities. Consequently, the trap emission and the PL evolution of NCs are facilitated. Besides, the internal doping is favored for the metal impurities with high reduction potential because they are easily reduced by mercapto-ligands. Furthermore, because the presence of metal impurities in NC solution both promotes the oxidation of mercapto-ligands and weakens the interparticle electrostatic repulsion, the colloidal solution of doped aqueous NCs is theoretically proved unstable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.