Lacking of both prognostic biomarkers and therapeutic targets, triple-negative breast cancer (TNBC) underscores pivotal needs to uncover novel biomarkers and viable therapies. MicroRNAs have broad biological functions in cancers and may serve as ideal biomarkers. In this study, by data mining of the Cancer Genome Atlas database, we screened out 4 differentially-expressed microRNAs (DEmiRNAs) between TNBC and normal samples: miR-135b-5p, miR-9-3p, miR-135b-3p and miR-455-5p. They were specially correlated with the prognosis of TNBC but not non-TNBC. The weighted correlation network analysis (WGCNA) for potential target genes of 3 good prognosis-related DEmiRNAs (miR-135b-5p, miR-9-3p, miR-135b-3p) identified 4 hub genes with highly positive correlation with TNBC subtype: FOXC1, BCL11A, FAM171A1 and RGMA. The targeting relationships between miR-9-3p and FOXC1/FAM171A1, miR-135b-3p and RGMA were validated by dual-luciferase reporter assays. Importantly, the regulatory functions of 4 DEmiRNAs and 3 verified target genes on cell proliferation and migration were explored in TNBC cell lines. In conclusion, we shed lights on these 4 DEmiRNAs (miR-135b-5p, miR-9-3p, miR-135b-3p, miR-455-5p) and 3 hub genes (FOXC1, FAM171A1, RGMA) as specific prognostic biomarkers and promising therapeutic targets for TNBC.
Chemoresistance of tumors often leads to treatment failure in clinical practice, which underscores pivotal needs to uncover novel therapeutic strategies. Accumulating evidences show that microRNAs (miRNAs) are widely involved in carcinogenesis, but their function on chemoresistance remains largely unexplored. In this study, we found that miR-93-5p (miR-93) significantly inhibited cell proliferation, induced G1/S cell cycle arrest and increased chemosensitivity to paclitaxel (PTX) in vitro and in vivo. Moreover, two well-established oncogenes, E2F1 and CCND1, were identified as dual targets of miR-93. Knockdown of E2F1 and CCND1 reduced cell proliferation and PTX-sensitivity, whereas overexpression of them had the opposite effect. More importantly, overexpression of E2F1 and CCND1 antagonized miR-93-mediated cell cycle arrest and apoptosis. Further mechanistic study revealed that miR-93 exhibited its inhibitory role by directly targeting E2F1 and CCND1 to inactivate pRB/E2F1 pathway and AKT phosphorylation. Taken together, our findings suggested that miR-93 greatly improved chemosensitivity and potentially served as a novel therapeutic target for breast cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.