In this paper, magnesia porous aggregate was prepared by the foaming method with potassium oleate as the foaming agent. Secondly, the walnut shell powder was impregnated with the silica sol as the pore forming agent, and then, a new magnesia insulation material was prepared by 1300°C sintering. By changing the amount of the walnut shell powder added, the mechanical properties and thermal properties of the materials after sintering were studied. The results show that the sample with 10% walnut shell powder impregnated without the silica sol has a compression strength of 12 MPa. A sample with 10% walnut shell powder treated with the silica sol has a compression strength of 18 MPa. With the increase in the amount of the walnut shell powder added after impregnation, the bulk density, compression strength, and thermal conductivity of the sample all showed a decreasing trend, and the apparent porosity showed an increasing trend. When the additive amount is 20%, the bulk density of the sample is 1.029 g/cm3, and the thermal conductivity is 0.382 W/m K (1050°C).
Nanostructured hollow MgO microspheres were prepared by the template method. First, D-Anhydrous glucose was polymerized by the hydrothermal method to form a template. Second, a colorless solution was obtained by mixing magnesite with hydrochloric acid in a 1:2 proportion and heating in an 80 °C water bath for 2 h. Finally, the template from the first step was placed in the colorless solution, and the resulting precipitate was calcined at 550 °C for 2 h. The phase composition and microstructure of the calcined samples were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD results indicated that the main crystal is periclase. The SEM results indicates that the template carbon microsphere surface is smooth, and the its size is uniform and concentrated in the range of 100–200 nm. The diameters of the samples range from 60 to 90 nm, which is smaller than the size of the carbon microsphere. The TEM results indicates that the sample is hollow with a shell thickness of about 6–10 nm. The specific surface area of the calcined hollow sphere is 59.5 m²·g−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.