Incorporating (operational) flexibility into process design has been a key approach to cope with uncertainties. The increasing penetration of renewables and the need for developing new low-carbon technologies will increase the demand for flexibility in chemical processes. This paper presents a state-ofthe-art review focusing on the origin, definition, and elements of flexibility in the chemical engineering context. The article points out a significant overlap in terminology and concepts, making it difficult to understand and compare flexibility potential and constraints among studies. Further, the paper identifies a lack of available metrics for assessing specific types of flexibility and the need for developing indicators for exploring the potential flexibility of novel chemical processes. The paper proposes a classification of flexibility types and provides an overview of design strategies that have been adopted so far to enable different types of flexibility. Finally, it offers a conceptual framework that can support designers to evaluate specific types of flexibility in early-stage assessments of novel chemical processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.