It is well established that classical one-parameter distributions lack the flexibility to model the characteristics of a complex random phenomenon. This fact motivates clever generalizations of these distributions by applying various mathematical schemes. In this paper, we contribute in extending the one-parameter length-biased Maxwell distribution through the famous Marshall–Olkin scheme. We thus introduce a new two-parameter lifetime distribution called the Marshall–Olkin length-biased Maxwell distribution. We emphasize the pliancy of the main functions, strong stochastic order results and versatile moments measures, including the mean, variance, skewness and kurtosis, offering more possibilities compared to the parental length-biased Maxwell distribution. The statistical characteristics of the new model are discussed on the basis of the maximum likelihood estimation method. Applications to simulated and practical data sets are presented. In particular, for five referenced data sets, we show that the proposed model outperforms five other comparable models, also well known for their fitting skills.
The Lomax distribution is arguably one of the most useful lifetime distributions, explaining the developments of its extensions or generalizations through various schemes. The Marshall–Olkin length-biased Lomax distribution is one of these extensions. The associated model has been used in the frameworks of data fitting and reliability tests with success. However, the theory behind this distribution is non-existent and the results obtained on the fit of data were sufficiently encouraging to warrant further exploration, with broader comparisons with existing models. This study contributes in these directions. Our theoretical contributions on the the Marshall–Olkin length-biased Lomax distribution include an original compounding property, various stochastic ordering results, equivalences of the main functions at the boundaries, a new quantile analysis, the expressions of the incomplete moments under the form of a series expansion and the determination of the stress–strength parameter in a particular case. Subsequently, we contribute to the applicability of the Marshall–Olkin length-biased Lomax model. When combined with the maximum likelihood approach, the model is very effective. We confirm this claim through a complete simulation study. Then, four selected real life data sets were analyzed to illustrate the importance and flexibility of the model. Especially, based on well-established standard statistical criteria, we show that it outperforms six strong competitors, including some extended Lomax models, when applied to these data sets. To our knowledge, such comprehensive applied work has never been carried out for this model.
In this article, a generalization of the Length biased Exponential distribution called Harris extended Length biased Exponential distribution is studied, and its properties are discussed. The parameters of the proposed model are estimated by using maximum likelihood estimation method.The new distribution is applied to the real data sets to establish the flexibility of the newly developed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.