There is a growing recognition that unconventional sources of gas, such as shale gas, coal bed methane (CBM) and deep tight gas will contribute a significant component of future gas supplies as technologies evolve. In recent years, the interest in such source of gas utilization technologies based on small-scale LNG production has been rising steeply. In this paper, a mobile liquefier prototype for 10000 Nm 3 /d of CBM has been designed, constructed and tested. It has two cascade refrigeration systems. The high-temperature refrigeration system will pre-cool the resource gas to 5 o C, and the low-temperature refrigeration system will continue to cool the resource gas to the liquefied point with a Mixed Refrigerant Cycle (MRC). The kernel compressor is a conventional oil-lubricated air-conditioning compressor with the discharge pressure of 2.0 MPa. The main heat exchanger is plate-fin heat exchanger with four passages. A series of experiments have been done on the prototype liquefier at different resource gas pressures and environmental temperatures. It is less than one hour from the start of the equipment to the existence of LNG. The maximum production of LNG is about 20 m 3 /d when a stream of about 12500 Nm 3 /d of pure CBM at a process pressure of 1.3 MPa is liquefied. The energy consumption of liquefying 1 Nm 3 methane is 0.612 kWh.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.