We compared the effects of saline stress (9:1 molar ratio of NaCl : Na 2 SO 4 , pH 6.44-6.65) and alkaline stress (9:1 molar ratio of NaHCO 3 : Na 2 CO 3 , pH 8.71-8.89) on the germination, growth, photosynthesis, ionic balance and activity of anti-oxidant enzymes of Lathyrus quinquenervius to elucidate the physiological adaptive mechanism of plants to alkaline stress (high pH). The results showed that, at a low stress intensity, the effects of saline stress and alkaline stress on L. quinquenervius were similar. Compared with saline stress, high alkaline stress intensity clearly inhibited germination, growth, photosynthesis and root system activity, and led to a sharp increase in Na + and an ion imbalance in the shoots, as well as enhanced H 2 O 2 and malondialdehyde content, resulting in severe intracellular oxidative stress. The results indicated that the accumulation of organic acid was a central adaptive mechanism by which L. quinquenervius maintained intracellular ionic balance under alkaline stress. Lathyrus quinquenervius may enhance organic acid synthesis to remedy the shortage of negative charge resulting from the massive influx of Na + and decreased inorganic anions. In addition, saline stress and low alkaline stress slightly enhanced the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX), but did not affect catalase (CAT) activity. However, strong alkaline stress significantly enhanced the activities of SOD and APX, and reduced CAT activity. We propose that enhancing the activities of SOD and APX may be a vital mechanism by which L. quinquenervius resists oxidative stress caused by alkaline stress.
How migrating cells differentially adapt and respond to extracellular track geometries remains unknown. Using intravital imaging, we demonstrate that invading cells exhibit dorsoventral (top-to-bottom) polarity in vivo. To investigate the impact of dorsoventral polarity on cell locomotion through different confining geometries, we fabricated microchannels of fixed cross-sectional area, albeit with distinct aspect ratios. Vertical confinement, exerted along the dorsoventral polarity axis, induces myosin II–dependent nuclear stiffening, which results in RhoA hyperactivation at the cell poles and slow bleb-based migration. In lateral confinement, directed perpendicularly to the dorsoventral polarity axis, the absence of perinuclear myosin II fails to increase nuclear stiffness. Hence, cells maintain basal RhoA activity and display faster mesenchymal migration. In summary, by integrating microfabrication, imaging techniques, and intravital microscopy, we demonstrate that dorsoventral polarity, observed in vivo and in vitro, directs cell responses in confinement by spatially tuning RhoA activity, which controls bleb-based versus mesenchymal migration.
The mechanical properties of the nucleus are closely related to many cellular functions; thus, measuring nuclear mechanical properties is crucial to our understanding of cell biomechanics and could lead to intrinsic biophysical contrast mechanisms to classify cells. Although many technologies have been developed to characterize cell stiffness, they generally require contact with the cell and thus cannot provide direct information on nuclear mechanical properties. In this work, we developed a flow cytometry technique based on an all-optical measurement to measure nuclear mechanical properties by integrating Brillouin spectroscopy with microfluidics. Brillouin spectroscopy probes the mechanical properties of material via light scattering, so it is inherently label-free, non-contact, and non-invasive. Using a measuring beam spot of submicron size, we can measure several regions within each cell as they flow, which enables us to classify cell populations based on their nuclear mechanical signatures at a throughput of ~200 cells per hour. We show that Brillouin cytometry has sufficient sensitivity to detect physiologically-relevant changes in nuclear stiffness by probing the effect of drug-induced chromatin decondensation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.