miRNAs have emerged as post-transcriptional regulators that are critically involved in the pathogenesis of a number of human cancers. Cdc42, one of the best characterized members of the Rho GTPase family, is found to be up-regulated in several types of human tumors and has been implicated in cancer initiation and progression. In the present study, we have identified miR-137 as a potential regulator of Cdc42 expression. A bioinformatics search revealed a putative target-site for miR-137 within the Cdc42 3 0 UTR at nt 792-798, which is highly conserved across different species. Expression of miR-137 in colorectal cancer cell lines was found inversely correlated with Cdc42 expression. miR-137 could significantly suppress Cdc42 3 0 UTR luciferase-reporter activity, and this effect was not detectable when the putative 3 0 UTR target-site was mutated. Consistent with the results of the reporter assay, ectopic expression of miR-137 reduced both mRNA and protein expression levels of Cdc42 and mimicked the effect of Cdc42 knockdown in inhibiting proliferation, inducing G1 cell cycle arrest, and blocking invasion of the colorectal cancer cells, whereas anti-miR-137 expression led to the opposite effect. Furthermore, expression of miR-137 suppressed the immediate downstream effector of Cdc42, PAK signaling. Our results suggest that miR-137 may have a tumor suppressor function by directly targeting Cdc42 to inhibit the proliferation and invasion activities of colorectal cancer cells. They raise an interesting possibility that Cdc42 activity and function can be controlled by miRNAs in addition to the classic regulators such as guanine nucleotide exchange factors and GTPase-activating proteins.
Although Rho family GTPases RhoA, RhoB and RhoC share more than 85% amino acid sequence identity, they may play distinct roles in tumor progression. RhoA and RhoC have been suggested to have positive effects on tumor progression, but the role of RhoB in cancer, particularly in gastric cancer, remains unclear. In our study, we have examined the expression levels of these three Rho GTPases in a large panel of specimens from gastric cancer patients by immunohistochemistry. We found that RhoA and RhoC expression were significantly elevated, while RhoB was reduced or absent, in surgically removed gastric cancer tissues when compared to normal gastric tissues. The significant reduction of RhoB expression was confirmed in another group of gastric cancer samples in comparison to the adjacent non-neoplastic tissues. Then we transfected the plasmids containing RhoA, RhoB or RhoC cDNA into two gastric cancer cell lines, SGC7901 and AGS cells, respectively. By overexpression experiments, we found that RhoA promoted the gastric cancer cell proliferation and RhoC stimulated migration and invasion of the cancer cell. RhoB expression, however, significantly inhibited the proliferation, migration and invasion of the gastric cancer cells and also enhanced the chemosensitivity of these cells to anticancer drugs. It appears that RhoB plays an opposing role from that of RhoA and/or RhoC in gastric cancer cells. Our work suggests that RhoB may play a tumor suppressor role and subsequently may have potential implications in future targeted therapy.
Circulating tumor cells (CTCs) are rare cancer cells released from tumors into the blood stream that are thought to have a key role in cancer metastasis. Investigation of CTCs is an exciting area of research but remains in its infancy, and the presence of CTCs has been associated with worse prognosis in several major cancer types. Gastric cancer (GC) is a highly lethal malignancy and a serious public health concern in East Asia especially in China. There is an urgent need for identifying new, better prognostic markers to enhance diagnosis and prognosis, facilitate drug development, and to improve the treatment of gastric cancer patients. There are considerable interests in gastric CTCs given their potential use as gastric cancer biomarkers. This review highlights recent advances in studies of gastric CTCs, including the isolation and biological molecular characteristics of gastric CTCs, and their clinical significance.
Background: Statins, which are used to lower blood cholesterol levels by inhibiting HMG-CoA reductase, have shown anticancer effects in many cancer cells. However, the role of statins in gastric cancer remains unclear. This study aims to investigate whether the statins could antagonize progression of gastric cancer cells and tried to find the molecule mechanism. Methods: Effects of simvastatin on the morphology, proliferation, migration, apoptosis, and invasion of gastric cancer cells were detected and compared. Western blotting, cell viability assay, fluorescence, and transfection were employed to study the molecule mechanism of the effects and the interaction between YAP and β-catenin signaling. Results: Simvastatin could inhibit proliferation, migration and invasion, and promote the apoptosis in gastric cancer cells. Mechanistic studies showed that simvastatin treatment could inhibit the expression of β-catenin and the activity of YAP and the downstream targets of YAP and β-catenin in gastric cancer cells. Moreover, we found that YAP and β-catenin could form a positive feedback loop in gastric cancer cells. Further investigation revealed that simvastatin mainly acted through by inhibiting the activity of RhoA to inhibit YAP and βcatenin, and the geranylgeranyl pyrophosphate pathway mediated this regulation. Conclusion: Statins represent a promising therapeutic option for gastric cancer by simultaneously targeting YAP and β-catenin signaling.
Mutant KRAS and BRAF are associated with primary EGFR inhibitor resistance in colorectal cancer (CRC). However, other biomarkers that could predict EGFR inhibitor resistance remain elusive. In the present study, immunoblotting and cell proliferation results revealed that yes‑associated protein (YAP), a downstream effector of the Hippo pathway, was positively associated with primary cetuximab resistance in CRC cells. YAP knockdown enhanced the cytotoxicity of cetuximab in CRC cells. Simvastatin, a 3‑hydroxy‑3‑methylglutaryl‑coenzyme A (HMG‑CoA) reductase inhibitor of the mevalonate pathway that inhibits YAP bioactivity through nuclear translocation and total YAP expression, increased the cytotoxicity of EGFR inhibitors (cetuximab and gefitinib) against CRC cells. The combination of simvastatin and EGFR inhibitors inhibited YAP and EGFR signaling more markedly than each agent alone. Adding back geranylgeranyl pyrophosphate (GGPP), a key product of the mevalonate pathway, reversed the YAP bioactivity inhibition induced by simvastatin and the cell proliferation inhibition induced by the combination of simvastatin and EGFR inhibitors. Collectively, these results revealed that YAP may be useful in identifying cetuximab resistance in CRC and indicated that targeting of both YAP and EGFR signals may present a promising therapeutic approach for CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.