Ceramic pigments have been widely used in a variety of industries because of their excellent properties, such as high thermal stability, low-cost productions, and simple manufacturing processes. Re-use of mirror waste, which consists of silicon dioxide greater than 70%, is a method that can reduce raw materials cost. In this work, ceramic pigment with forsterite structure, Mg2SiO4, was synthesized via conventional solid state reaction by using mirror waste as a precursor. Solid solutions of Co-doped forsterite pigment, CoxMg(2−x)SiO4 where x = 0.02–1.6, were calcined at 1000 °C for 2 h. The calcined powders were characterized by X-ray diffraction technique (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectrophotometer, and color measurement (CIEL*a*b*). XRD results confirmed that forsterite phase was found as a main phase in the ceramic powder. However, the forsterite phase decreased with increased concentration of Co to x = 0.8–1.6. This could be because of the solubility limit of Co in solid solution. In addition, the use of mirror waste as a raw material was able to reduce calcination temperature compared to the use of oxide reagents. Color measurements or CIEL*a*b* color space of forsterite pigments were located in red-blue quadrant for Co-doped pigment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.