In this paper, a radially polarised cosh-Gaussian laser beam (CGLB) is used to study the electron acceleration produced in vacuum. A highly energetic electron beam can be achieved by a CGLB, even with comparatively low-powered lasers. The properties of a CGLB cause it to focus earlier, over a shorter duration than a Gaussian laser beam, which makes it suitable for obtaining high energies over small durations. It is found that the energy gained by the electrons strongly depends upon the decentering parameter of the laser profile. It is also observed that for a fixed value of energy gain, if the decentering parameter is increased, then the intensity of the laser field decreases. The dependence of the energy gained by electrons on the laser intensity and the laser-spot size is also studied.
The present study was conducted to determine electron acceleration by cosh-Gaussian laser beam (CGLB) and axial magnetic field. CGLB possesses higher power and has ability to focus earlier than the Gaussian beam. Nonlinear differential equations are derived for CGLB for energy and velocity. The dependence of electron energy gained for different values of laser intensity parameter ‘ao’ has been graphically plotted. It is examined that both laser and axial magnetic field significantly affects the electron energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.