In recent years, nanoscience and nanotechnology have emerged as a new area of fundamental science and are receiving global attention due to their extensive applications. Conventionally nanoparticles were manufactured by physical and chemical techniques. The recent development and implementation of new technologies have led to a new trend, the nano-revolution unfolding the role of plants in bio-and green synthesis of nanoparticles which seems to have drawn a quite unequivocal attention to the synthesis of stable nanoparticles. Although nanoparticles can be synthesized through many conventional methods, biological route of the synthesis is more competent than the physical and chemical techniques. Biologically synthesized nanoparticles have enjoyed an upsurge of applications in various sectors. Hence, the present study envisions biosynthesis of nanoparticles from plants which are emerging as nanofactories. Hence, the present review summarizes the literature reported thus far and envisions plants as emerging sources of nanofactories along with applications, the mechanism behind phytosynthesis of nanoparticles and the mechanism of antibacterial action of nanoparticles.
An efficient protocol for synthesis of silver nanoparticles (AgNPs) using Xanthium strumerium L. leaves was developed. This study revealed that bioactive compounds present in the extract, function as stabilizing and capping agent for AgNPs. SEM, EDX, TEM and XRD studies confirm the structure, crystalline nature and surface morphology of the AgNPs. Size of synthesized AgNPs was in the range of 20–50 nm having spherical morphology. The AgNPs were found to be toxic against pathogenic bacteria such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The use of AgNPs as antibacterial agent is advantageous over other methods for control of pathogenic microorganisms.
The species name commemorates the botanist Johann König. The genus Murray commemorates Swedish physician and botanist Johann Andreas Murray who died in 1791. Hence the botanical name of the curry leaves is Murraya koenigii. 9 Taxonomic status a. Kingdom-Plantae b. Sub-kingdom-Tracheobionta c. Superdivision-Spermatophyta d. Division-Magnoliophyta e. Class-Magnoliospida f. Subclass-Rosidae g. Order-Sapindales h. Family-Rutaceae i. Genus-Murraya J. Koenig ex L j. Species-Murraya koenigii L. Spreng. History The history of curry leaves are seen in early 1 st to 4 th century AD. In Tamil and Kannada literature it was updated as word 'kari' with
Tinospora cordifolia is a prioritized medicinal plant and having an immense medicinal importance especially in Indian medicinal system. But this plant needs a regeneration protocol for its rapid propagation. An efficient regeneration protocol was developed for T. cordifolia using nodal explants. High frequency of multiple shoot formation was induced when the nodal segments were cultured on MS medium supplemented with BAP (1.0 mg L−1) and 2-iP (0.5 mg L−1). The highest mean number of shoots per nodal explant (7.9 ± 0.45) with highest shoot length (9.3 ± 0.48 cm) and 86% response were achieved on this media and hormonal concentration. The optimum rooting was obtained on ½ strength of MS medium augmented with IBA (0.5 mg L−1) with 8.3 ± 0.46 cm root length and 89% response. Micropropagated plantlets were found to be identical with the mother plant when clonal fidelity of these plantlets were analyzed with inter simple sequence repeat (ISSR) marker. The berberine content was analyzed through LCMS QToF and the highest amount was found in in vitro callus (19.8 µg/gm) followed by stem (9.3 µg/gm) and leaves of field-grown plants (8.4 µg/gm). Further, presence of berberine was confirmed by ESI–MS spectra with protonated molecular ions ([M + H]+) at m/z 336. Furthermore, MS–MS fragmentation pattern confirmed for the presence of berberine in both the samples. Both the spectra (standard and samples) showed common peaks for berberine in the form of protonated molecular ions ([M + H]+) at m/z 320, m/z 304, m/z 292, m/z 278 in MS/MS mode. The study revealed that developed protocol is potent for rapid mass propagation of this plant species with high accumulation of important secondary metabolite berberine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.