Zinc ferrite nanoparticles of different sizes ranging from 12 to 62 nm were synthesized by using the nitrate route. These nanoparticles were irradiated by a 100 MeV oxygen beam at two fluences: 1 × 10 13 and 5 × 10 13 ions/cm 2 . It was observed that modes corresponding to cubic spinel phase were retained after the irradiation in all the systems. The variation in the parameters of various modes follows phonon confinement, while this effect seems to violate in irradiated specimen. It was found that the irradiation-induced changes in the modes F 2g (2) and F 2g (3) depend on whether the crystallite size of the pristine sample is less than, equal to or greater than the phonon confinement length, while this length is not dominant for the irradiation-induced changes in the mode A 1g . The changes in various parameters of the modes are attributed to the combined effect of the restructuring of the chemical species and ion-induced defects.
The formation of a nanostructure is a popular strategy for catalyst applications because it can generate new surfaces that can significantly improve the catalytic activity and durability of the catalysts. However, the increase in the surface area resulting from nanostructuring does not fully explain the substantial improvement in the catalytic properties of the CO2 electroreduction reaction, and the underlying mechanisms have not yet been fully understood. Here, based on a combination of extended X-ray absorption fine structure analysis, X-ray photoelectron spectroscopy, and Kelvin probe force microscopy, we observed a contracted Au-Au bond length and low work function with the nanostructured Au surface that had enhanced catalytic activity for electrochemical CO2 reduction. The results may improve the understanding of the enhanced stability of the nanostructured Au electrode based on the resistance of cation adhesion during the CO2 reduction reaction.
An explicit study of comparison on the basis of structure and electronic properties of ZnO nanostructures was discussed. ZnO synthesized by sol-gel and hydrothermal method without using any surfactant leads to the formation of two different morphologies. Rietveld crystal structure refinement of X-ray diffraction patterns confirmed the wurtzite structure of both samples. Raman spectra also confirmed the wurtzite phase formation and improved crystallinity in sample synthesized by hydrothermal route that are concurrent with results obtained from X-ray diffraction. Field-emission scanning electron microscopy revealed the formation of ZnO spherical nanoparticle structure for sol-gel method and flower like μ-structure for ZnO prepared through hydrothermal route. Williamson-Hall equations applied to study the strain and stress parameters present in the material, show the decrease in their values as the crystal size increases. Energy band gap is calculated using diffused reflectance spectroscopy. Near-edge X-ray absorption fine-structure measurements at O K- and Zn L3,2- edges simulated with FEFF9.05 code confirmed the presence of oxygen vacancies. Further extended x-ray absorption fine-structure revealed a similar local atomic structure for both samples despite having different morphologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.