Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright’s F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.
Bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae is a major biotic constraint on obtaining higher grain yields in rice. Marker-assisted backcross breeding (MABB) was performed by the pyramiding of Xa4, xa5, xa13 and Xa21 resistance genes in the popular variety, Ranidhan. A foreground selection in BC1F1, BC2F1, and BC3F1 progenies detected all the target genes in 12, 7 and 16 progenies by using the closely linked markers from a population size of 426, 410, and 530, respectively. The BB-positive progenies carrying the target genes with a maximal similarity to the recipient parent was backcrossed in each backcross generation. A total of 1784 BC3F2 seeds were obtained from the best BC3F1 progeny. The screening of the BC3F2 progenies for the four target genes resulted in eight plants carrying all the four target genes. A bioassay of the pyramided lines conferred very high levels of resistance to the predominant isolates of bacterial blight disease. In addition, these pyramided lines were similar to Ranidhan in 16 morpho-quality traits, namely, plant height, filled grains/panicle, panicles/plant, grain length, grain breadth, grain weight, milling, head rice recovery, kernel length after cooking, water uptake, the volume expansion ratio, gel consistency, alkali-spreading value, and the amylose content.
Submergence stress due to flash floods reduces rice yield drastically in sensitive varieties. Maudamani is a high yielding popular rice variety but is highly susceptible to submergence stress. The selection of progenies carrying Sub1 and GW5 (wide-grain) enhanced the submergence stress tolerance and grain yield of theMaudamani variety by following the marker-assisted backcross breeding method. Foreground screening detected 14 BC1F1, 17 BC2F1, and 12 BC3F1 backcross progenies that carried the target QTLs for submergence tolerance and grain width. Background screening was performed in the progenies carrying the target QTL and enhanced the recovery of a recipient parent’s genome by upto 96.875% in the BC3 pyramided line. The BC3F1 plant containing the highest recipient parent genome content and the target QTLs was self-pollinated. In BC3F2 generation, the target QTLs the Sub1 and GW5 (wide-grain) alleles and recipient parent’s yield component QTL OsSPL14 were tracked for homozygous states in the progenies. Seven pyramided lines showed tolerance to submergence for 14 days and higher grain yield than both the parents. The pyramided lines were similar to the recipient parent for the majority of the studied morphological and quality traits. The pyramided lines are useful as cultivars and can serve as potential donors for transfer of Sub1, OsSPL14, Gn1a, GW5 (wide-grain), and SCM2 QTLs.
Wetland rice in many humid tropical regions of Asia, Africa, and South America are affected by iron toxicity, which mainly occur due to increase in Fe(II) concentration in soil solution resulting from drop of redox potential arising from anaerobic situations in submerged rice fields. The high quantity of ferrous ions in the soil solution upsets the mineral element balance in rice plants and affects its growth. A field experiment was carried out in acidic laterite soil (pH 5.1) having 400 mg kg−1 diethylene triamine pentaacetic acid extractable Fe for developing strategies to combat Fe toxicity and to study Fe, Zn, and Mn nutrition in rice. The treatments included four cultivars and six soil management options. Soil pH increased upon submergence and stabilized at 6.2 in compost treated plots and 6.8 in lime treated plots after eight weeks of flooding. Application of lime resulted significantly higher yields in all the four cultivars over control. Among the cultivars lowest Fe concentration both in grain and straw was recorded in tolerant as compared to susceptible cultivars. The ratio of Fe/Mn in rice plants was highest under control and reduced with Fe toxicity management treatments. It was further observed that Fe/Mn ratio of tolerant cultivars was lower as compared to susceptible cultivars irrespective of amendments. Similar relations were also recorded for Fe/Zn ratio under different Fe toxicity management interventions. Thus, the application of lime and limiting plant nutrients, such as K, Mn, and Zn along with tolerant cultivars could be important components of Fe toxicity management in Fe toxic acid lateritic soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.