The performance of an aerofoil depends upon the angle of attack, leading-edge radius, surface modifications, etc. The aerofoil which has a broader range of attack angle and surface area is responsible for the upliftment in the performance of the aerofoil. The present work deals with the evaluation of the aerofoil spread with dimples over the active surface. The positions and area of spread are modified accordingly and evaluated for the velocity and pressure lineation. The aerofoil with 30% dimples over the active surface is found to possess higher values for the required intents of velocity and pressure at an inlet velocity of 9 m/s. The optimum model with better lineation values is further evaluated for the co-efficient of lift and drag to propose the best design. The best result is obtained at an aerofoil of NACA 8412 series with 30% dimples extension at the rear end placed at 15° angle of attack and the regression analysis is done for the coefficient of lift values.
The aerofoils which allow for the flow at a broader range of angles have a more significant impact on the power generation from the turbine. The conception and examination for the aerofoil geometry have been executed in the current work to evaluate the behaviour of the flow in terms of the velocity and pressure lineation. The work is intended to focus on analysing the flow behaviour along the surface of the aerofoil geometry. The aerofoil geometries are opted to be of new aerofoil type of NACA 8412 series. The aerofoil geometry was analysed for a constant angle of attack along the total length. This evaluation was done for the angle of attack ranging from 0° to 20° with 5° interval for each model. The inlet velocity for the flow along the surface of the aerofoil geometry was taken varied from 7.5 m/s to 10 m/s with 0.5 m/s interval for each model. The plot points for the geometries are generated using the Auto CAD for different angles. The further simulations and evaluations were executed using the Ansys Fluent software. On evaluating and considering the variable conditions, the optimum values are obtained for the aerofoil at 15° angle of inclination at an inlet velocity of 9 m/s. The software generated results when compared to the regression data generated ascertained to be in a good correlation with each other.
Heat exchangers are the most common equipment used to transfer heat from high-temperature fluid to low-temperature fluid without direct contact. The present study considers the analytical approach on a concentric tube heat exchanger with the helical baffle. The objective of the study is to reduce the size with effect to increase the effectiveness of the heat exchanger. A heat exchanger with 100 mm external diameter and 560 mm length contains a helical baffle with 20 degrees inclination. The designed heat exchanger is analysed by varying the mass flow rate of hot water from 0.25 Kg/s to 2 Kg/s at an interval of 0.25 kg/s at three different temperatures i.e. 363.16 K, 368.16 K, 373.16 K. A nanofluid is applied to cool the hot water without any loss. The mass flow rate of cold fluid is 2 Kg/s at 30 degrees Celsius. The results have displayed that the heat exchanger exhibited appreciable effectiveness at a flow rate of 0.25 Kg/s for hot water at 373.16 K temperature. There by suggesting it as the optimum model of the heat exchanger.
The stability of a vehicle depends on many parameters.The Centre of Gravity is one of the most important in them. If the height of center of gravity from the ground decreases the stability of the vehicle increases. But when the ground clearance is too low it has a chance of collision vehicle and the ground while going on an uneven road or with speed brakes. So, to avoid the collision of a vehicle to ground and increase the stability a mechanism to adjust the ground clearance is to be attached. Also, the lift and drag forces can also be altered using this adjustable ground clearance mechanism. The designers usually fix ground clearance and they try to acquire this by the suspension system. The suspension system has tires, tire air, springs, shock absorber, and other parts to connect the vehicle with the wheels. The present paper describes the significance of using hydraulic oil as a working fluid in an adjustable ground clearance mechanism. Also describes the design and analysis of piston and cylinder rod.
The hydrofoil is one of the typical factors that affect the vortex structure and flow characteristics of hydraulic machinery. In order to enhance the utilization efficiency of hydraulic machinery in marine energy, parallel grooves are proposed and applied to the hydrofoil. Following that, a numerical analysis is performed using the SST k- turbulence model, and the effects of hydrofoil profile, angle of attack, and flow are investigated. The profiles of NACA 0066, NACA 8412, NACA M2, and RAE 104 are considered for the study. The performance is analyzed based on the lift to drag ratio. The best model from this is given with surface modification and the flow study is carried out at different angles of attack. The modified profile of NACA 8412 with parallel groves has shown the highest lift to drag ratio at a 12-degree angle of attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.