Social dominance is widely known to facilitate access to food resources in many animal species such as deer. However, research has paid little attention to dominance in ad libitum access to food because it was thought not to result in any benefit for dominant individuals. In this study we assessed if, even under ad libitum conditions, social rank may allow dominant hinds to consume the preferred components of food. Forty-four red deer hinds (Cervus elaphus) were allowed to consume ad libitum meal consisting of pellets of sunflower, lucerne and orange, and seeds of cereals, corn, cotton, and carob tree. The meal was placed only in one feeder, which reduced accessibility to a few individuals simultaneously. During seven days, feeding behavior (order of access, time to first feeding bout, total time spent feeding, and time per feeding bout) were assessed during the first hour. The relative abundance of each meal component was assessed at times 0, 1 and 5 h, as well as its nutritional composition. Social rank was positively related to the amount of time spent feeding during the 1st h (P = 0.048). Selection indices were positively correlated with energy (P = 0.018 during the 1st h and P = 0.047 from 1st to 5th) and fat (only during the 1st h; P = 0.036), but also negatively with certain minerals. Thus, dominant hinds could select high energy meal components for longer time under an ad libitum but restricted food access setting. Selection indices showed a higher selectivity when food availability was higher (1st hour respect to 1st to 5th). Finally, high and low ranking hinds had longer time per feeding bout than mid ones (P = 0.011), suggesting complex behavioral feeding tactics of low ranking social ungulates.
Recent wildlife population declines are usually attributed to multiple sources such as global climate change and habitat loss and degradation inducing decreased food supply. However, interactive effects of fluctuations in abundance of main foods and weather conditions on population densities and reproductive success have been studied rarely. We analysed long-term (1973–2018) data on Tengmalm’s owl (Aegolius funereus) and the influence of prey abundance and weather on breeding densities and reproductive success in western Finland. We found that fledgling production per breeding attempt declined and laying date of the owl population delayed during the period between 1973 and 2018. The breeding density of the owl population decreased with increasing temperature in winter (October–March), fledgling production increased with increasing temperature and precipitation in spring (April–June), whereas the initiation of egg-laying was delayed with increasing depth of snow cover in late winter (January–March). The decreasing trend of fledgling production, which was mainly due to starvation of offspring, was an important factor contributing to the long-term decline of the Tengmalm’s owl study population. Milder and more humid spring and early summer temperatures due to global warming were not able to compensate for lowered offspring production of owls. The main reason for low productivity is probably loss and degradation of mature and old-growth forests due to clear-felling which results in loss of coverage of prime habitat for main (bank voles) and alternative foods (small birds) of owls inducing lack of food, and refuges against predators of Tengmalm’s owls. This interpretation was also supported by the delayed start of egg-laying during the study period although ambient temperatures increased prior to and during the egg-laying period.
In a previous study, we suggested that the common practice of transporting a mare for mating and then bringing her back to an environment that also contains males that did not sire the fetus may be a major cause of high percentages of pregnancy disruption in domestic horses. In this study, we tested whether disruption of pregnancies induced by AI occurs as frequently as after mating with a strange stallion away from home and is affected by the same factors in the home social environment. Based on 77 records, the probability of pregnancy disruption after AI depended on the social environment in which the mare was maintained after mating and the number of foals the mare had delivered in the past. Also after AI, as with natural matings away from home, the probability of pregnancy disruption was higher when the mare had no male company in her enclosure but stallions or geldings were present in an adjacent enclosure than when the mare was sharing the enclosure with geldings (generalized linear mixed model = 8.68, = 0.007, odds ratio = 8.17). These data support the prediction that the mare perceives conception after AI equally to natural mating with a strange stallion. The results suggested pregnancy disruption may be stimulated by the social circumstances of the home environment in mares artificially inseminated as in mares mated naturally away from home. The practical implications of this result is that after AI, to reduce risk of pregnancy disruption and improve welfare, horse breeders should place the pregnant mare into an environment with no stallion or stallions/gelding or geldings or to an enclosure together with the male or males.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.