In soda-lime glass manufacturing, evaporation of volatile compounds from glass melt is the origin of the dust emission from glass tank furnace. The exhausted dust then is deposited on the regenerator and is needed to be removed. Thus, this study focuses on using the dust from melting glass in glass production. The glass batches were prepared from 0 wt% to 10 wt% of the exhausted dust from soda-lime glass production as a substitution of the total raw materials. The analysis of phase and chemical composition of the dust by x-ray powder diffraction (XRD) and x-ray fluorescence technique (XRF) indicated that it consisted mainly sodium sulphate. Thermal analysis (TG/DSC) revealed that the addition of exhausted dust reduced the temperature of the melting reaction of the glass batches. The optimum amount of the exhausted dust, which made it possible to obtain the glass with the lowest number of remaining bubbles, was 2 wt%. From CIE lab and dilatometry results revealed that up to 2 wt% replacement of total raw materials by the exhausted dust in the glass batch did not affect the glass color, thermal expansion coefficient, glass transition temperature and dilatometric softening point of glass samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.